POExtraction_UC3 / parse_bhel.py
DSatishchandra's picture
Update parse_bhel.py
7cbc3d2 verified
raw
history blame
2.36 kB
import pdfplumber
import pandas as pd
import tempfile
def format_material_description(description_series, si_no):
# Placeholder for a formatting function; update with your logic
return f"{description_series.iloc[0]} (SI No: {si_no})"
def extract_bhel_data(pdf_file):
data = []
columns = ["SI No", "Material Description", "Unit", "Quantity", "Dely Qty", "Dely Date", "Unit Rate", "Value", "Material Number", "HSN Code", "IGST"]
start_si, end_si = 10, 1150
with pdfplumber.open(pdf_file) as pdf:
for page in pdf.pages:
text = page.extract_text().splitlines()
for line in text:
parts = line.split()
try:
si_no = int(parts[0])
if start_si <= si_no <= end_si:
material_desc = " ".join(parts[1:3])
unit = parts[3]
quantity = int(parts[4])
dely_qty = int(parts[5])
dely_date = parts[6]
unit_rate = float(parts[7])
value = float(parts[8])
material_number = parts[9] if len(parts) > 9 else ""
hsn_code = parts[10] if len(parts) > 10 else ""
igst = parts[11] if len(parts) > 11 else ""
data.append([si_no, material_desc, unit, quantity, dely_qty, dely_date, unit_rate, value, material_number, hsn_code, igst])
except (ValueError, IndexError):
continue
df = pd.DataFrame(data, columns=columns)
# Correct the SI No column to follow increments of 10
df['SI No'] = range(10, 10 + len(df) * 10, 10)
# Reapply the Material Description formatting based on the corrected SI No
df['Material Description'] = df['SI No'].apply(
lambda si_no: format_material_description(df['Material Description'], si_no)
)
# Save to temporary file for download
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx")
df.to_excel(temp_file.name, index=False)
# Display the corrected data to the user
import ace_tools as tools # Replace with your preferred display method
tools.display_dataframe_to_user(name="Corrected Data with Updated SI No", dataframe=df)
return temp_file.name