DSatishchandra's picture
Update app.py
9377013 verified
raw
history blame
5.87 kB
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
from salesforce_integration import fetch_salesforce_data # Import the Salesforce integration
# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [12.9716, 77.5946]
}
# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name, salesforce_data=None):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
tilt_angle = round(random.uniform(0, 45), 2)
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
alert_level = 'Green'
anomaly_details = []
if tilt_angle > 30 or vibration > 3:
alert_level = 'Yellow'
anomaly_details.append("Tilt or Vibration threshold exceeded.")
if tilt_angle > 40 or vibration > 4.5:
alert_level = 'Red'
anomaly_details.append("Critical tilt or vibration detected.")
health_score = max(0, 100 - (tilt_angle + vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
# If salesforce data exists, prioritize it over simulation
if salesforce_data:
# Merge or override simulated data with Salesforce data
for pole_data in salesforce_data:
if pole_data['Site'] == site_name and pole_data['Pole ID'] == f'{site_name[:3].upper()}-{pole_id:03}':
solar_kwh = pole_data.get('Solar (kWh)', solar_kwh)
wind_kwh = pole_data.get('Wind (kWh)', wind_kwh)
power_required = pole_data.get('Power Required (kWh)', power_required)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
health_score = round(pole_data.get('Health Score', health_score), 2)
alert_level = pole_data.get('Alert Level', alert_level)
break
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Tilt Angle (Β°)': tilt_angle,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Anomalies': "; ".join(anomaly_details),
'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")
selected_site = st.text_input("Enter site to view (Hyderabad, Gadwal, Kurnool, Ballari):", "Hyderabad")
if selected_site in SITES:
# Fetch Salesforce data
salesforce_data = fetch_salesforce_data(selected_site)
with st.spinner(f"Simulating poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, selected_site, salesforce_data) for i in range(POLES_PER_SITE)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Summary Metrics
col1, col2, col3 = st.columns(3)
col1.metric("Total Poles", site_df.shape[0])
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
# Table View
st.subheader(f"πŸ“‹ Pole Data Table for {selected_site}")
with st.expander("Filter Options"):
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
st.dataframe(filtered_df, use_container_width=True)
# Charts
st.subheader("πŸ“Š Energy Generation Comparison")
st.bar_chart(site_df[['Solar (kWh)', 'Wind (kWh)']].mean())
st.subheader("πŸ“ˆ Tilt vs. Vibration")
st.scatter_chart(site_df[['Tilt Angle (Β°)', 'Vibration (g)']])
# Map with Red Alerts
st.subheader("πŸ“ Red Alert Pole Locations")
red_df = site_df[site_df['Alert Level'] == 'Red']
if not red_df.empty:
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=red_df,
get_position='[Longitude, Latitude]',
get_color='[255, 0, 0, 160]',
get_radius=100,
)
]
))
st.markdown("<h3 style='text-align: center;'>Red Alert Poles are Blinking</h3>", unsafe_allow_html=True)
else:
st.info("No red alerts at this time.")
else:
st.warning("Invalid site. Please enter one of: Hyderabad, Gadwal, Kurnool, Ballari")