lorenzoscottb commited on
Commit
26c8ca4
β€’
1 Parent(s): e3a0318

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -15,13 +15,13 @@ def check_lang(lang_acronym):
15
  else:
16
  return "False"
17
 
18
- title = "DSA II"
19
 
20
  description_main = """
21
- A set of models to perform sentiment analysis. Choose between Large-Multilingual or Small-En-only.
22
 
23
- Use the interface to check if a language is included in the multilingual model, using language acronyms (e.g. it for Italian).
24
- Select one of the two pages to start querying one of the two models.
25
  """
26
 
27
  description_L = """
@@ -32,6 +32,8 @@ description_S = """
32
  A BERT-base-cased model pre-trained and tuned on English data.
33
  """
34
 
 
 
35
  examples = [
36
  ["I was followed by the blue monster but was not scared. I was calm and relaxed."],
37
  ["Ero seguito dal mostro blu, ma non ero spaventato. Ero calmo e rilassato."],
@@ -42,7 +44,9 @@ interface_words = gr.Interface(
42
  fn=check_lang,
43
  inputs="text",
44
  outputs="text",
 
45
  description=description_main,
 
46
  )
47
 
48
  interface_model_L = gr.Interface.load(
 
15
  else:
16
  return "False"
17
 
18
+ title = "DSA: version II"
19
 
20
  description_main = """
21
+ A set of pre-trained LLMs tuned to perform sentiment analysis. You can choose between a Large-Multilingual or Base-English-only model.
22
 
23
+ Use the current interface to check if a language is included in the multilingual model, using language acronyms (e.g. it for Italian).
24
+ Click on one of the upper buttons to select and start querying one of the two models.
25
  """
26
 
27
  description_L = """
 
32
  A BERT-base-cased model pre-trained and tuned on English data.
33
  """
34
 
35
+ example_main = ["en", "it", "pl"]
36
+
37
  examples = [
38
  ["I was followed by the blue monster but was not scared. I was calm and relaxed."],
39
  ["Ero seguito dal mostro blu, ma non ero spaventato. Ero calmo e rilassato."],
 
44
  fn=check_lang,
45
  inputs="text",
46
  outputs="text",
47
+ title=title,
48
  description=description_main,
49
+ examples=example_main,
50
  )
51
 
52
  interface_model_L = gr.Interface.load(