Spaces:
Runtime error
Runtime error
Update inference to latest
Browse files- __init__.py +7 -2
- gradio_app.py +1 -1
- run.py +12 -2
- spar3d/models/network.py +5 -2
- spar3d/system.py +242 -47
- spar3d/utils.py +1 -1
__init__.py
CHANGED
|
@@ -29,14 +29,19 @@ class SPAR3DLoader:
|
|
| 29 |
|
| 30 |
@classmethod
|
| 31 |
def INPUT_TYPES(cls):
|
| 32 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
def load(self):
|
| 35 |
device = comfy.model_management.get_torch_device()
|
| 36 |
model = SPAR3D.from_pretrained(
|
| 37 |
SPAR3D_MODEL_NAME,
|
| 38 |
config_name="config.yaml",
|
| 39 |
weight_name="model.safetensors",
|
|
|
|
| 40 |
)
|
| 41 |
model.to(device)
|
| 42 |
model.eval()
|
|
|
|
| 29 |
|
| 30 |
@classmethod
|
| 31 |
def INPUT_TYPES(cls):
|
| 32 |
+
return {
|
| 33 |
+
"required": {
|
| 34 |
+
"low_vram_mode": ("BOOLEAN", {"default": False}),
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
|
| 38 |
+
def load(self, low_vram_mode=False):
|
| 39 |
device = comfy.model_management.get_torch_device()
|
| 40 |
model = SPAR3D.from_pretrained(
|
| 41 |
SPAR3D_MODEL_NAME,
|
| 42 |
config_name="config.yaml",
|
| 43 |
weight_name="model.safetensors",
|
| 44 |
+
low_vram_mode=low_vram_mode,
|
| 45 |
)
|
| 46 |
model.to(device)
|
| 47 |
model.eval()
|
gradio_app.py
CHANGED
|
@@ -148,7 +148,7 @@ def run_model(
|
|
| 148 |
start = time.time()
|
| 149 |
with torch.no_grad():
|
| 150 |
with (
|
| 151 |
-
torch.autocast(device_type=device, dtype=torch.
|
| 152 |
if "cuda" in device
|
| 153 |
else nullcontext()
|
| 154 |
):
|
|
|
|
| 148 |
start = time.time()
|
| 149 |
with torch.no_grad():
|
| 150 |
with (
|
| 151 |
+
torch.autocast(device_type=device, dtype=torch.bfloat16)
|
| 152 |
if "cuda" in device
|
| 153 |
else nullcontext()
|
| 154 |
):
|
run.py
CHANGED
|
@@ -54,6 +54,15 @@ if __name__ == "__main__":
|
|
| 54 |
type=int,
|
| 55 |
help="Texture atlas resolution. Default: 1024",
|
| 56 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
remesh_choices = ["none"]
|
| 59 |
if TRIANGLE_REMESH_AVAILABLE:
|
|
@@ -102,6 +111,7 @@ if __name__ == "__main__":
|
|
| 102 |
args.pretrained_model,
|
| 103 |
config_name="config.yaml",
|
| 104 |
weight_name="model.safetensors",
|
|
|
|
| 105 |
)
|
| 106 |
model.to(device)
|
| 107 |
model.eval()
|
|
@@ -149,7 +159,7 @@ if __name__ == "__main__":
|
|
| 149 |
torch.cuda.reset_peak_memory_stats()
|
| 150 |
with torch.no_grad():
|
| 151 |
with (
|
| 152 |
-
torch.autocast(device_type=device, dtype=torch.
|
| 153 |
if "cuda" in device
|
| 154 |
else nullcontext()
|
| 155 |
):
|
|
@@ -157,7 +167,7 @@ if __name__ == "__main__":
|
|
| 157 |
image,
|
| 158 |
bake_resolution=args.texture_resolution,
|
| 159 |
remesh=args.remesh_option,
|
| 160 |
-
vertex_count=
|
| 161 |
return_points=True,
|
| 162 |
)
|
| 163 |
if torch.cuda.is_available():
|
|
|
|
| 54 |
type=int,
|
| 55 |
help="Texture atlas resolution. Default: 1024",
|
| 56 |
)
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
"--low-vram-mode",
|
| 59 |
+
action="store_true",
|
| 60 |
+
help=(
|
| 61 |
+
"Use low VRAM mode. SPAR3D consumes 10.5GB of VRAM by default. "
|
| 62 |
+
"This mode will reduce the VRAM consumption to roughly 7GB but in exchange "
|
| 63 |
+
"the model will be slower. Default: False"
|
| 64 |
+
),
|
| 65 |
+
)
|
| 66 |
|
| 67 |
remesh_choices = ["none"]
|
| 68 |
if TRIANGLE_REMESH_AVAILABLE:
|
|
|
|
| 111 |
args.pretrained_model,
|
| 112 |
config_name="config.yaml",
|
| 113 |
weight_name="model.safetensors",
|
| 114 |
+
low_vram_mode=args.low_vram_mode,
|
| 115 |
)
|
| 116 |
model.to(device)
|
| 117 |
model.eval()
|
|
|
|
| 159 |
torch.cuda.reset_peak_memory_stats()
|
| 160 |
with torch.no_grad():
|
| 161 |
with (
|
| 162 |
+
torch.autocast(device_type=device, dtype=torch.bfloat16)
|
| 163 |
if "cuda" in device
|
| 164 |
else nullcontext()
|
| 165 |
):
|
|
|
|
| 167 |
image,
|
| 168 |
bake_resolution=args.texture_resolution,
|
| 169 |
remesh=args.remesh_option,
|
| 170 |
+
vertex_count=vertex_count,
|
| 171 |
return_points=True,
|
| 172 |
)
|
| 173 |
if torch.cuda.is_available():
|
spar3d/models/network.py
CHANGED
|
@@ -7,8 +7,8 @@ import torch.nn.functional as F
|
|
| 7 |
from einops import rearrange
|
| 8 |
from jaxtyping import Float
|
| 9 |
from torch import Tensor
|
|
|
|
| 10 |
from torch.autograd import Function
|
| 11 |
-
from torch.cuda.amp import custom_bwd, custom_fwd
|
| 12 |
|
| 13 |
from spar3d.models.utils import BaseModule, normalize
|
| 14 |
from spar3d.utils import get_device
|
|
@@ -79,7 +79,10 @@ class _TruncExp(Function): # pylint: disable=abstract-method
|
|
| 79 |
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
|
| 80 |
@staticmethod
|
| 81 |
@conditional_decorator(
|
| 82 |
-
custom_fwd,
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
def forward(ctx, x): # pylint: disable=arguments-differ
|
| 85 |
ctx.save_for_backward(x)
|
|
|
|
| 7 |
from einops import rearrange
|
| 8 |
from jaxtyping import Float
|
| 9 |
from torch import Tensor
|
| 10 |
+
from torch.amp import custom_bwd, custom_fwd
|
| 11 |
from torch.autograd import Function
|
|
|
|
| 12 |
|
| 13 |
from spar3d.models.utils import BaseModule, normalize
|
| 14 |
from spar3d.utils import get_device
|
|
|
|
| 79 |
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
|
| 80 |
@staticmethod
|
| 81 |
@conditional_decorator(
|
| 82 |
+
custom_fwd,
|
| 83 |
+
"cuda" in get_device(),
|
| 84 |
+
cast_inputs=torch.float32,
|
| 85 |
+
device_type="cuda",
|
| 86 |
)
|
| 87 |
def forward(ctx, x): # pylint: disable=arguments-differ
|
| 88 |
ctx.save_for_backward(x)
|
spar3d/system.py
CHANGED
|
@@ -12,7 +12,7 @@ from huggingface_hub import hf_hub_download
|
|
| 12 |
from jaxtyping import Float
|
| 13 |
from omegaconf import OmegaConf
|
| 14 |
from PIL import Image
|
| 15 |
-
from safetensors.torch import load_model
|
| 16 |
from torch import Tensor
|
| 17 |
|
| 18 |
from spar3d.models.diffusion.gaussian_diffusion import (
|
|
@@ -115,11 +115,17 @@ class SPAR3D(BaseModule):
|
|
| 115 |
sigma_max: float = 120.0
|
| 116 |
s_churn: float = 3.0
|
| 117 |
|
|
|
|
|
|
|
| 118 |
cfg: Config
|
| 119 |
|
| 120 |
@classmethod
|
| 121 |
def from_pretrained(
|
| 122 |
-
cls,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
):
|
| 124 |
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 125 |
if os.path.isdir(os.path.join(base_dir, pretrained_model_name_or_path)):
|
|
@@ -139,8 +145,18 @@ class SPAR3D(BaseModule):
|
|
| 139 |
|
| 140 |
cfg = OmegaConf.load(config_path)
|
| 141 |
OmegaConf.resolve(cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
model = cls(cfg)
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
return model
|
| 145 |
|
| 146 |
@property
|
|
@@ -148,39 +164,52 @@ class SPAR3D(BaseModule):
|
|
| 148 |
return next(self.parameters()).device
|
| 149 |
|
| 150 |
def configure(self):
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
self.
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
self.
|
| 158 |
-
self.
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
self.
|
| 162 |
-
self.
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
self.
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
)
|
| 169 |
-
self.global_estimator = find_class(self.cfg.global_estimator_cls)(
|
| 170 |
-
self.cfg.global_estimator
|
| 171 |
-
)
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
| 179 |
)
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
)
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
self.bbox: Float[Tensor, "2 3"]
|
| 185 |
self.register_buffer(
|
| 186 |
"bbox",
|
|
@@ -206,30 +235,151 @@ class SPAR3D(BaseModule):
|
|
| 206 |
self.baker = TextureBaker()
|
| 207 |
self.image_processor = ImageProcessor()
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
)
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
self.diffusion_spaced = SpacedDiffusion(
|
| 228 |
use_timesteps=space_timesteps(
|
| 229 |
self.cfg.train_time_steps,
|
| 230 |
"ddim" + str(self.cfg.inference_time_steps),
|
| 231 |
),
|
| 232 |
-
**diffusion_kwargs,
|
| 233 |
)
|
| 234 |
self.sampler = PointCloudSampler(
|
| 235 |
model=self.pdiff_backbone,
|
|
@@ -243,6 +393,35 @@ class SPAR3D(BaseModule):
|
|
| 243 |
s_churn=self.cfg.s_churn,
|
| 244 |
)
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
def triplane_to_meshes(
|
| 247 |
self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
|
| 248 |
) -> list[Mesh]:
|
|
@@ -303,6 +482,11 @@ class SPAR3D(BaseModule):
|
|
| 303 |
return out
|
| 304 |
|
| 305 |
def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
# if batch[rgb_cond] is only one view, add a view dimension
|
| 307 |
if len(batch["rgb_cond"].shape) == 4:
|
| 308 |
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
|
|
@@ -340,9 +524,15 @@ class SPAR3D(BaseModule):
|
|
| 340 |
|
| 341 |
direct_codes = self.tokenizer.detokenize(tokens)
|
| 342 |
scene_codes = self.post_processor(direct_codes)
|
|
|
|
| 343 |
return scene_codes, direct_codes
|
| 344 |
|
| 345 |
def forward_pdiff_cond(self, batch: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
if len(batch["rgb_cond"].shape) == 4:
|
| 347 |
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
|
| 348 |
batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
|
|
@@ -512,6 +702,11 @@ class SPAR3D(BaseModule):
|
|
| 512 |
output_rotation = rotation2 @ rotation
|
| 513 |
|
| 514 |
global_dict = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
if self.image_estimator is not None:
|
| 516 |
global_dict.update(
|
| 517 |
self.image_estimator(
|
|
|
|
| 12 |
from jaxtyping import Float
|
| 13 |
from omegaconf import OmegaConf
|
| 14 |
from PIL import Image
|
| 15 |
+
from safetensors.torch import load_file, load_model
|
| 16 |
from torch import Tensor
|
| 17 |
|
| 18 |
from spar3d.models.diffusion.gaussian_diffusion import (
|
|
|
|
| 115 |
sigma_max: float = 120.0
|
| 116 |
s_churn: float = 3.0
|
| 117 |
|
| 118 |
+
low_vram_mode: bool = False
|
| 119 |
+
|
| 120 |
cfg: Config
|
| 121 |
|
| 122 |
@classmethod
|
| 123 |
def from_pretrained(
|
| 124 |
+
cls,
|
| 125 |
+
pretrained_model_name_or_path: str,
|
| 126 |
+
config_name: str,
|
| 127 |
+
weight_name: str,
|
| 128 |
+
low_vram_mode: bool = False,
|
| 129 |
):
|
| 130 |
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
| 131 |
if os.path.isdir(os.path.join(base_dir, pretrained_model_name_or_path)):
|
|
|
|
| 145 |
|
| 146 |
cfg = OmegaConf.load(config_path)
|
| 147 |
OmegaConf.resolve(cfg)
|
| 148 |
+
# Add in low_vram_mode to the config
|
| 149 |
+
if os.environ.get("SPAR3D_LOW_VRAM", "0") == "1" and torch.cuda.is_available():
|
| 150 |
+
cfg.low_vram_mode = True
|
| 151 |
+
else:
|
| 152 |
+
cfg.low_vram_mode = low_vram_mode if torch.cuda.is_available() else False
|
| 153 |
model = cls(cfg)
|
| 154 |
+
|
| 155 |
+
if not model.cfg.low_vram_mode:
|
| 156 |
+
load_model(model, weight_path, strict=False)
|
| 157 |
+
else:
|
| 158 |
+
model._state_dict = load_file(weight_path, device="cpu")
|
| 159 |
+
|
| 160 |
return model
|
| 161 |
|
| 162 |
@property
|
|
|
|
| 164 |
return next(self.parameters()).device
|
| 165 |
|
| 166 |
def configure(self):
|
| 167 |
+
# Initialize all modules as None
|
| 168 |
+
self.image_tokenizer = None
|
| 169 |
+
self.point_embedder = None
|
| 170 |
+
self.tokenizer = None
|
| 171 |
+
self.camera_embedder = None
|
| 172 |
+
self.backbone = None
|
| 173 |
+
self.post_processor = None
|
| 174 |
+
self.decoder = None
|
| 175 |
+
self.image_estimator = None
|
| 176 |
+
self.global_estimator = None
|
| 177 |
+
self.pdiff_image_tokenizer = None
|
| 178 |
+
self.pdiff_camera_embedder = None
|
| 179 |
+
self.pdiff_backbone = None
|
| 180 |
+
self.diffusion_spaced = None
|
| 181 |
+
self.sampler = None
|
| 182 |
+
|
| 183 |
+
# Dummy parameter to safe the device placement for dynamic loading
|
| 184 |
+
self.dummy_param = torch.nn.Parameter(torch.tensor(0.0))
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
channel_scales = [self.cfg.scale_factor_xyz] * 3
|
| 187 |
+
channel_scales += [self.cfg.scale_factor_rgb] * 3
|
| 188 |
+
channel_biases = [self.cfg.bias_xyz] * 3
|
| 189 |
+
channel_biases += [self.cfg.bias_rgb] * 3
|
| 190 |
+
channel_scales = np.array(channel_scales)
|
| 191 |
+
channel_biases = np.array(channel_biases)
|
| 192 |
+
|
| 193 |
+
betas = get_named_beta_schedule(
|
| 194 |
+
self.cfg.diffu_sched, self.cfg.train_time_steps, self.cfg.diffu_sched_exp
|
| 195 |
)
|
| 196 |
+
|
| 197 |
+
self.diffusion_kwargs = dict(
|
| 198 |
+
betas=betas,
|
| 199 |
+
model_mean_type=self.cfg.mean_type,
|
| 200 |
+
model_var_type=self.cfg.var_type,
|
| 201 |
+
channel_scales=channel_scales,
|
| 202 |
+
channel_biases=channel_biases,
|
| 203 |
)
|
| 204 |
|
| 205 |
+
self.is_low_vram = self.cfg.low_vram_mode and get_device() == "cuda"
|
| 206 |
+
|
| 207 |
+
# Create CPU shadow copy if in low VRAM mode
|
| 208 |
+
if not self.is_low_vram:
|
| 209 |
+
self._load_all_modules()
|
| 210 |
+
else:
|
| 211 |
+
print("Loading in low VRAM mode")
|
| 212 |
+
|
| 213 |
self.bbox: Float[Tensor, "2 3"]
|
| 214 |
self.register_buffer(
|
| 215 |
"bbox",
|
|
|
|
| 235 |
self.baker = TextureBaker()
|
| 236 |
self.image_processor = ImageProcessor()
|
| 237 |
|
| 238 |
+
def _load_all_modules(self):
|
| 239 |
+
"""Load all modules into memory"""
|
| 240 |
+
# Load modules to specified device
|
| 241 |
+
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
|
| 242 |
+
self.cfg.image_tokenizer
|
| 243 |
+
).to(self.device)
|
| 244 |
+
self.point_embedder = find_class(self.cfg.point_embedder_cls)(
|
| 245 |
+
self.cfg.point_embedder
|
| 246 |
+
).to(self.device)
|
| 247 |
+
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer).to(
|
| 248 |
+
self.device
|
| 249 |
+
)
|
| 250 |
+
self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
|
| 251 |
+
self.cfg.camera_embedder
|
| 252 |
+
).to(self.device)
|
| 253 |
+
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone).to(
|
| 254 |
+
self.device
|
| 255 |
+
)
|
| 256 |
+
self.post_processor = find_class(self.cfg.post_processor_cls)(
|
| 257 |
+
self.cfg.post_processor
|
| 258 |
+
).to(self.device)
|
| 259 |
+
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder).to(
|
| 260 |
+
self.device
|
| 261 |
+
)
|
| 262 |
+
self.image_estimator = find_class(self.cfg.image_estimator_cls)(
|
| 263 |
+
self.cfg.image_estimator
|
| 264 |
+
).to(self.device)
|
| 265 |
+
self.global_estimator = find_class(self.cfg.global_estimator_cls)(
|
| 266 |
+
self.cfg.global_estimator
|
| 267 |
+
).to(self.device)
|
| 268 |
+
self.pdiff_image_tokenizer = find_class(self.cfg.pdiff_image_tokenizer_cls)(
|
| 269 |
+
self.cfg.pdiff_image_tokenizer
|
| 270 |
+
).to(self.device)
|
| 271 |
+
self.pdiff_camera_embedder = find_class(self.cfg.pdiff_camera_embedder_cls)(
|
| 272 |
+
self.cfg.pdiff_camera_embedder
|
| 273 |
+
).to(self.device)
|
| 274 |
+
self.pdiff_backbone = find_class(self.cfg.pdiff_backbone_cls)(
|
| 275 |
+
self.cfg.pdiff_backbone
|
| 276 |
+
).to(self.device)
|
| 277 |
|
| 278 |
+
self.diffusion_spaced = SpacedDiffusion(
|
| 279 |
+
use_timesteps=space_timesteps(
|
| 280 |
+
self.cfg.train_time_steps,
|
| 281 |
+
"ddim" + str(self.cfg.inference_time_steps),
|
| 282 |
+
),
|
| 283 |
+
**self.diffusion_kwargs,
|
| 284 |
+
)
|
| 285 |
+
self.sampler = PointCloudSampler(
|
| 286 |
+
model=self.pdiff_backbone,
|
| 287 |
+
diffusion=self.diffusion_spaced,
|
| 288 |
+
num_points=512,
|
| 289 |
+
point_dim=6,
|
| 290 |
+
guidance_scale=self.cfg.guidance_scale,
|
| 291 |
+
clip_denoised=True,
|
| 292 |
+
sigma_min=1e-3,
|
| 293 |
+
sigma_max=self.cfg.sigma_max,
|
| 294 |
+
s_churn=self.cfg.s_churn,
|
| 295 |
)
|
| 296 |
|
| 297 |
+
def _load_main_modules(self):
|
| 298 |
+
"""Load the main processing modules"""
|
| 299 |
+
if all(
|
| 300 |
+
[
|
| 301 |
+
self.image_tokenizer,
|
| 302 |
+
self.point_embedder,
|
| 303 |
+
self.tokenizer,
|
| 304 |
+
self.camera_embedder,
|
| 305 |
+
self.backbone,
|
| 306 |
+
self.post_processor,
|
| 307 |
+
self.decoder,
|
| 308 |
+
]
|
| 309 |
+
):
|
| 310 |
+
return # Main modules already loaded
|
| 311 |
+
|
| 312 |
+
device = next(self.parameters()).device # Get the current device
|
| 313 |
+
|
| 314 |
+
self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
|
| 315 |
+
self.cfg.image_tokenizer
|
| 316 |
+
).to(device)
|
| 317 |
+
self.point_embedder = find_class(self.cfg.point_embedder_cls)(
|
| 318 |
+
self.cfg.point_embedder
|
| 319 |
+
).to(device)
|
| 320 |
+
self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer).to(
|
| 321 |
+
device
|
| 322 |
)
|
| 323 |
+
self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
|
| 324 |
+
self.cfg.camera_embedder
|
| 325 |
+
).to(device)
|
| 326 |
+
self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone).to(device)
|
| 327 |
+
self.post_processor = find_class(self.cfg.post_processor_cls)(
|
| 328 |
+
self.cfg.post_processor
|
| 329 |
+
).to(device)
|
| 330 |
+
self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder).to(device)
|
| 331 |
+
|
| 332 |
+
# Restore weights if we have a checkpoint path
|
| 333 |
+
if hasattr(self, "_state_dict"):
|
| 334 |
+
self.load_state_dict(self._state_dict, strict=False)
|
| 335 |
+
|
| 336 |
+
def _load_estimator_modules(self):
|
| 337 |
+
"""Load the estimator modules"""
|
| 338 |
+
if all([self.image_estimator, self.global_estimator]):
|
| 339 |
+
return # Estimator modules already loaded
|
| 340 |
+
|
| 341 |
+
device = next(self.parameters()).device # Get the current device
|
| 342 |
+
|
| 343 |
+
self.image_estimator = find_class(self.cfg.image_estimator_cls)(
|
| 344 |
+
self.cfg.image_estimator
|
| 345 |
+
).to(device)
|
| 346 |
+
self.global_estimator = find_class(self.cfg.global_estimator_cls)(
|
| 347 |
+
self.cfg.global_estimator
|
| 348 |
+
).to(device)
|
| 349 |
+
|
| 350 |
+
# Restore weights if we have a checkpoint path
|
| 351 |
+
if hasattr(self, "_state_dict"):
|
| 352 |
+
self.load_state_dict(self._state_dict, strict=False)
|
| 353 |
+
|
| 354 |
+
def _load_pdiff_modules(self):
|
| 355 |
+
"""Load only the point diffusion modules"""
|
| 356 |
+
if all(
|
| 357 |
+
[
|
| 358 |
+
self.pdiff_image_tokenizer,
|
| 359 |
+
self.pdiff_camera_embedder,
|
| 360 |
+
self.pdiff_backbone,
|
| 361 |
+
]
|
| 362 |
+
):
|
| 363 |
+
return # PDiff modules already loaded
|
| 364 |
+
|
| 365 |
+
device = next(self.parameters()).device # Get the current device
|
| 366 |
+
|
| 367 |
+
self.pdiff_image_tokenizer = find_class(self.cfg.pdiff_image_tokenizer_cls)(
|
| 368 |
+
self.cfg.pdiff_image_tokenizer
|
| 369 |
+
).to(device)
|
| 370 |
+
self.pdiff_camera_embedder = find_class(self.cfg.pdiff_camera_embedder_cls)(
|
| 371 |
+
self.cfg.pdiff_camera_embedder
|
| 372 |
+
).to(device)
|
| 373 |
+
self.pdiff_backbone = find_class(self.cfg.pdiff_backbone_cls)(
|
| 374 |
+
self.cfg.pdiff_backbone
|
| 375 |
+
).to(device)
|
| 376 |
+
|
| 377 |
self.diffusion_spaced = SpacedDiffusion(
|
| 378 |
use_timesteps=space_timesteps(
|
| 379 |
self.cfg.train_time_steps,
|
| 380 |
"ddim" + str(self.cfg.inference_time_steps),
|
| 381 |
),
|
| 382 |
+
**self.diffusion_kwargs,
|
| 383 |
)
|
| 384 |
self.sampler = PointCloudSampler(
|
| 385 |
model=self.pdiff_backbone,
|
|
|
|
| 393 |
s_churn=self.cfg.s_churn,
|
| 394 |
)
|
| 395 |
|
| 396 |
+
# Restore weights if we have a checkpoint path
|
| 397 |
+
if hasattr(self, "_state_dict"):
|
| 398 |
+
self.load_state_dict(self._state_dict, strict=False)
|
| 399 |
+
|
| 400 |
+
def _unload_pdiff_modules(self):
|
| 401 |
+
"""Unload point diffusion modules to free memory"""
|
| 402 |
+
self.pdiff_image_tokenizer = None
|
| 403 |
+
self.pdiff_camera_embedder = None
|
| 404 |
+
self.pdiff_backbone = None
|
| 405 |
+
self.diffusion_spaced = None
|
| 406 |
+
self.sampler = None
|
| 407 |
+
torch.cuda.empty_cache()
|
| 408 |
+
|
| 409 |
+
def _unload_main_modules(self):
|
| 410 |
+
"""Unload main processing modules to free memory"""
|
| 411 |
+
self.image_tokenizer = None
|
| 412 |
+
self.point_embedder = None
|
| 413 |
+
self.tokenizer = None
|
| 414 |
+
self.camera_embedder = None
|
| 415 |
+
self.backbone = None
|
| 416 |
+
self.post_processor = None
|
| 417 |
+
torch.cuda.empty_cache()
|
| 418 |
+
|
| 419 |
+
def _unload_estimator_modules(self):
|
| 420 |
+
"""Unload estimator modules to free memory"""
|
| 421 |
+
self.image_estimator = None
|
| 422 |
+
self.global_estimator = None
|
| 423 |
+
torch.cuda.empty_cache()
|
| 424 |
+
|
| 425 |
def triplane_to_meshes(
|
| 426 |
self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
|
| 427 |
) -> list[Mesh]:
|
|
|
|
| 482 |
return out
|
| 483 |
|
| 484 |
def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
|
| 485 |
+
if self.is_low_vram:
|
| 486 |
+
self._unload_pdiff_modules()
|
| 487 |
+
self._unload_estimator_modules()
|
| 488 |
+
self._load_main_modules()
|
| 489 |
+
|
| 490 |
# if batch[rgb_cond] is only one view, add a view dimension
|
| 491 |
if len(batch["rgb_cond"].shape) == 4:
|
| 492 |
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
|
|
|
|
| 524 |
|
| 525 |
direct_codes = self.tokenizer.detokenize(tokens)
|
| 526 |
scene_codes = self.post_processor(direct_codes)
|
| 527 |
+
|
| 528 |
return scene_codes, direct_codes
|
| 529 |
|
| 530 |
def forward_pdiff_cond(self, batch: Dict[str, Any]) -> Dict[str, Any]:
|
| 531 |
+
if self.is_low_vram:
|
| 532 |
+
self._unload_main_modules()
|
| 533 |
+
self._unload_estimator_modules()
|
| 534 |
+
self._load_pdiff_modules()
|
| 535 |
+
|
| 536 |
if len(batch["rgb_cond"].shape) == 4:
|
| 537 |
batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
|
| 538 |
batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
|
|
|
|
| 702 |
output_rotation = rotation2 @ rotation
|
| 703 |
|
| 704 |
global_dict = {}
|
| 705 |
+
if self.is_low_vram:
|
| 706 |
+
self._unload_pdiff_modules()
|
| 707 |
+
self._unload_main_modules()
|
| 708 |
+
self._load_estimator_modules()
|
| 709 |
+
|
| 710 |
if self.image_estimator is not None:
|
| 711 |
global_dict.update(
|
| 712 |
self.image_estimator(
|
spar3d/utils.py
CHANGED
|
@@ -10,7 +10,7 @@ import spar3d.models.utils as spar3d_utils
|
|
| 10 |
|
| 11 |
|
| 12 |
def get_device():
|
| 13 |
-
if os.environ.get("
|
| 14 |
return "cpu"
|
| 15 |
|
| 16 |
device = "cpu"
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def get_device():
|
| 13 |
+
if os.environ.get("SPAR3D_USE_CPU", "0") == "1":
|
| 14 |
return "cpu"
|
| 15 |
|
| 16 |
device = "cpu"
|