DOMMETI commited on
Commit
b19884c
·
verified ·
1 Parent(s): c9e02cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -7
app.py CHANGED
@@ -65,6 +65,7 @@ checking the frequency in list we come across a situtaion where we will find thr
65
  st.markdown(''':violet[Multi_Mode] \n Let's understand why this situation raises for example let's take list of numbers [1,1,2,2,3,3,4,4,5]. here by
66
  checking the frequency in list we come across a situtaion where we will find more than three maximun frequecy repeated value hence the output will be Multi_Mode.
67
  ''')
 
68
  def mode(*args):
69
  list1 = list(args)
70
  dict1 = {}
@@ -113,22 +114,17 @@ st.latex(r'''
113
  \text{Median} = \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}}{2}
114
  ''')
115
  def median(list1):
116
- list1.sort() # Ensure the list is sorted
117
  length = len(list1)
118
-
119
  if length % 2 == 0:
120
- # For even length, calculate the average of the two middle values
121
  mid1 = length // 2 - 1
122
  mid2 = length // 2
123
  return (list1[mid1] + list1[mid2]) / 2
124
  else:
125
- # For odd length, return the middle value
126
  mid = length // 2
127
  return list1[mid]
128
-
129
  st.title("Calculate Median")
130
  numbers_input_1 = st.text_input("Enter a list of numbers separated by commas (e.g., 1, 2, 3, 4, 5):", key="numbers_input_1")
131
-
132
  if numbers_input_1:
133
  parts = numbers_input_1.split(',')
134
  list1 = []
@@ -142,5 +138,23 @@ if numbers_input_1:
142
  result = median(list1)
143
  st.write("Median result:", result)
144
  else:
145
- st.write("No valid numbers provided.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
 
65
  st.markdown(''':violet[Multi_Mode] \n Let's understand why this situation raises for example let's take list of numbers [1,1,2,2,3,3,4,4,5]. here by
66
  checking the frequency in list we come across a situtaion where we will find more than three maximun frequecy repeated value hence the output will be Multi_Mode.
67
  ''')
68
+ st.title("Mode")
69
  def mode(*args):
70
  list1 = list(args)
71
  dict1 = {}
 
114
  \text{Median} = \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}}{2}
115
  ''')
116
  def median(list1):
117
+ list1.sort()
118
  length = len(list1)
 
119
  if length % 2 == 0:
 
120
  mid1 = length // 2 - 1
121
  mid2 = length // 2
122
  return (list1[mid1] + list1[mid2]) / 2
123
  else:
 
124
  mid = length // 2
125
  return list1[mid]
 
126
  st.title("Calculate Median")
127
  numbers_input_1 = st.text_input("Enter a list of numbers separated by commas (e.g., 1, 2, 3, 4, 5):", key="numbers_input_1")
 
128
  if numbers_input_1:
129
  parts = numbers_input_1.split(',')
130
  list1 = []
 
138
  result = median(list1)
139
  st.write("Median result:", result)
140
  else:
141
+ st.write("No valid numbers provided.")
142
+ st.subheader("Mean",divider=True)
143
+ st.markdown("""
144
+ Mean is one of the beautiful measurement of central tendency it invovles all the data present in it.The only drawback of mean is it is
145
+ effected by outliers.Based on the data we will compute the mean in three types""")
146
+ st.subheader("Arthamatic Mean",divider=True)
147
+ st.markdown("""Arthamatic Mean is used on data which have \n * Interval and Ratio Data \n * Symmetric Distributions \n * Data Without Outliers
148
+ """)
149
+ st.subheader("Population Mean Formula")
150
+ st.latex(r'''
151
+ \mu = \frac{1}{N} \sum_{i=1}^{N} x_i
152
+ ''')
153
+ st.subheader("Sample Mean Formula")
154
+ st.latex(r'''
155
+ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
156
+ ''')
157
+ st.subheader("Geometric Mean",divider=True)
158
+ st.subheader("Harmonic Mean",divider=True)
159
+
160