|
import torch |
|
from time import gmtime, strftime |
|
import os, sys, shutil |
|
from argparse import ArgumentParser |
|
from src.utils.preprocess import CropAndExtract |
|
from src.test_audio2coeff import Audio2Coeff |
|
from src.facerender.animate import AnimateFromCoeff |
|
from src.generate_batch import get_data |
|
from src.generate_facerender_batch import get_facerender_data |
|
|
|
from modules.text2speech import text2speech |
|
|
|
class SadTalker(): |
|
|
|
def __init__(self, checkpoint_path='checkpoints'): |
|
|
|
if torch.cuda.is_available() : |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
current_code_path = sys.argv[0] |
|
modules_path = os.path.split(current_code_path)[0] |
|
|
|
current_root_path = './' |
|
|
|
os.environ['TORCH_HOME']=os.path.join(current_root_path, 'checkpoints') |
|
|
|
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') |
|
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') |
|
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') |
|
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') |
|
|
|
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') |
|
audio2pose_yaml_path = os.path.join(current_root_path, 'config', 'auido2pose.yaml') |
|
|
|
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') |
|
audio2exp_yaml_path = os.path.join(current_root_path, 'config', 'auido2exp.yaml') |
|
|
|
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') |
|
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'config', 'facerender.yaml') |
|
|
|
|
|
print(path_of_lm_croper) |
|
self.preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) |
|
|
|
print(audio2pose_checkpoint) |
|
self.audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, |
|
audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint, device) |
|
print(free_view_checkpoint) |
|
self.animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, |
|
facerender_yaml_path, device) |
|
self.device = device |
|
|
|
def test(self, source_image, driven_audio, still_mode, use_enhancer, result_dir='./'): |
|
|
|
time_tag = strftime("%Y_%m_%d_%H.%M.%S") |
|
save_dir = os.path.join(result_dir, time_tag) |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
input_dir = os.path.join(save_dir, 'input') |
|
os.makedirs(input_dir, exist_ok=True) |
|
|
|
print(source_image) |
|
pic_path = os.path.join(input_dir, os.path.basename(source_image)) |
|
shutil.move(source_image, input_dir) |
|
|
|
if os.path.isfile(driven_audio): |
|
audio_path = os.path.join(input_dir, os.path.basename(driven_audio)) |
|
shutil.move(driven_audio, input_dir) |
|
else: |
|
text2speech |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
pose_style = 0 |
|
|
|
first_frame_dir = os.path.join(save_dir, 'first_frame_dir') |
|
os.makedirs(first_frame_dir, exist_ok=True) |
|
first_coeff_path, crop_pic_path = self.preprocess_model.generate(pic_path, first_frame_dir) |
|
if first_coeff_path is None: |
|
raise AttributeError("No face is detected") |
|
|
|
|
|
batch = get_data(first_coeff_path, audio_path, self.device) |
|
coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style) |
|
|
|
batch_size = 8 |
|
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode) |
|
self.animate_from_coeff.generate(data, save_dir, enhancer='gfpgan' if use_enhancer else None) |
|
video_name = data['video_name'] |
|
print(f'The generated video is named {video_name} in {save_dir}') |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.synchronize() |
|
|
|
if use_enhancer: |
|
return os.path.join(save_dir, video_name+'_enhanced.mp4'), os.path.join(save_dir, video_name+'_enhanced.mp4') |
|
|
|
else: |
|
return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4') |
|
|