|
import torch |
|
import torch.nn as nn |
|
from src.audio2pose_models.networks import ResidualConv, Upsample |
|
|
|
|
|
class ResUnet(nn.Module): |
|
def __init__(self, channel=1, filters=[32, 64, 128, 256]): |
|
super(ResUnet, self).__init__() |
|
|
|
self.input_layer = nn.Sequential( |
|
nn.Conv2d(channel, filters[0], kernel_size=3, padding=1), |
|
nn.BatchNorm2d(filters[0]), |
|
nn.ReLU(), |
|
nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1), |
|
) |
|
self.input_skip = nn.Sequential( |
|
nn.Conv2d(channel, filters[0], kernel_size=3, padding=1) |
|
) |
|
|
|
self.residual_conv_1 = ResidualConv(filters[0], filters[1], stride=(2,1), padding=1) |
|
self.residual_conv_2 = ResidualConv(filters[1], filters[2], stride=(2,1), padding=1) |
|
|
|
self.bridge = ResidualConv(filters[2], filters[3], stride=(2,1), padding=1) |
|
|
|
self.upsample_1 = Upsample(filters[3], filters[3], kernel=(2,1), stride=(2,1)) |
|
self.up_residual_conv1 = ResidualConv(filters[3] + filters[2], filters[2], stride=1, padding=1) |
|
|
|
self.upsample_2 = Upsample(filters[2], filters[2], kernel=(2,1), stride=(2,1)) |
|
self.up_residual_conv2 = ResidualConv(filters[2] + filters[1], filters[1], stride=1, padding=1) |
|
|
|
self.upsample_3 = Upsample(filters[1], filters[1], kernel=(2,1), stride=(2,1)) |
|
self.up_residual_conv3 = ResidualConv(filters[1] + filters[0], filters[0], stride=1, padding=1) |
|
|
|
self.output_layer = nn.Sequential( |
|
nn.Conv2d(filters[0], 1, 1, 1), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
|
|
x1 = self.input_layer(x) + self.input_skip(x) |
|
x2 = self.residual_conv_1(x1) |
|
x3 = self.residual_conv_2(x2) |
|
|
|
x4 = self.bridge(x3) |
|
|
|
|
|
x4 = self.upsample_1(x4) |
|
x5 = torch.cat([x4, x3], dim=1) |
|
|
|
x6 = self.up_residual_conv1(x5) |
|
|
|
x6 = self.upsample_2(x6) |
|
x7 = torch.cat([x6, x2], dim=1) |
|
|
|
x8 = self.up_residual_conv2(x7) |
|
|
|
x8 = self.upsample_3(x8) |
|
x9 = torch.cat([x8, x1], dim=1) |
|
|
|
x10 = self.up_residual_conv3(x9) |
|
|
|
output = self.output_layer(x10) |
|
|
|
return output |