|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
class Conv2d(nn.Module): |
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.conv_block = nn.Sequential( |
|
nn.Conv2d(cin, cout, kernel_size, stride, padding), |
|
nn.BatchNorm2d(cout) |
|
) |
|
self.act = nn.ReLU() |
|
self.residual = residual |
|
|
|
def forward(self, x): |
|
out = self.conv_block(x) |
|
if self.residual: |
|
out += x |
|
return self.act(out) |
|
|
|
class AudioEncoder(nn.Module): |
|
def __init__(self, wav2lip_checkpoint, device): |
|
super(AudioEncoder, self).__init__() |
|
|
|
self.audio_encoder = nn.Sequential( |
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0), |
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),) |
|
|
|
|
|
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict'] |
|
state_dict = self.audio_encoder.state_dict() |
|
|
|
for k,v in wav2lip_state_dict.items(): |
|
if 'audio_encoder' in k: |
|
state_dict[k.replace('module.audio_encoder.', '')] = v |
|
self.audio_encoder.load_state_dict(state_dict) |
|
|
|
|
|
def forward(self, audio_sequences): |
|
|
|
B = audio_sequences.size(0) |
|
|
|
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) |
|
|
|
audio_embedding = self.audio_encoder(audio_sequences) |
|
dim = audio_embedding.shape[1] |
|
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1)) |
|
|
|
return audio_embedding.squeeze(-1).squeeze(-1) |
|
|