|
|
|
import cv2 |
|
import numpy as np |
|
from src.face3d.models.bfm import ParametricFaceModel |
|
from src.face3d.models.facerecon_model import FaceReconModel |
|
import torch |
|
import subprocess, platform |
|
import scipy.io as scio |
|
from tqdm import tqdm |
|
|
|
|
|
def gen_composed_video(args, device, first_frame_coeff, coeff_path, audio_path, save_path, exp_dim=64): |
|
|
|
coeff_first = scio.loadmat(first_frame_coeff)['full_3dmm'] |
|
|
|
coeff_pred = scio.loadmat(coeff_path)['coeff_3dmm'] |
|
|
|
coeff_full = np.repeat(coeff_first, coeff_pred.shape[0], axis=0) |
|
|
|
coeff_full[:, 80:144] = coeff_pred[:, 0:64] |
|
coeff_full[:, 224:227] = coeff_pred[:, 64:67] |
|
coeff_full[:, 254:] = coeff_pred[:, 67:] |
|
|
|
tmp_video_path = '/tmp/face3dtmp.mp4' |
|
|
|
facemodel = FaceReconModel(args) |
|
|
|
video = cv2.VideoWriter(tmp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (224, 224)) |
|
|
|
for k in tqdm(range(coeff_pred.shape[0]), 'face3d rendering:'): |
|
cur_coeff_full = torch.tensor(coeff_full[k:k+1], device=device) |
|
|
|
facemodel.forward(cur_coeff_full, device) |
|
|
|
predicted_landmark = facemodel.pred_lm |
|
predicted_landmark = predicted_landmark.cpu().numpy().squeeze() |
|
|
|
rendered_img = facemodel.pred_face |
|
rendered_img = 255. * rendered_img.cpu().numpy().squeeze().transpose(1,2,0) |
|
out_img = rendered_img[:, :, :3].astype(np.uint8) |
|
|
|
video.write(np.uint8(out_img[:,:,::-1])) |
|
|
|
video.release() |
|
|
|
command = 'ffmpeg -v quiet -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, tmp_video_path, save_path) |
|
subprocess.call(command, shell=platform.system() != 'Windows') |
|
|
|
|