|
"""This script contains the image preprocessing code for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import numpy as np |
|
from scipy.io import loadmat |
|
from PIL import Image |
|
import cv2 |
|
import os |
|
from skimage import transform as trans |
|
import torch |
|
import warnings |
|
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) |
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
|
|
|
|
|
def POS(xp, x): |
|
npts = xp.shape[1] |
|
|
|
A = np.zeros([2*npts, 8]) |
|
|
|
A[0:2*npts-1:2, 0:3] = x.transpose() |
|
A[0:2*npts-1:2, 3] = 1 |
|
|
|
A[1:2*npts:2, 4:7] = x.transpose() |
|
A[1:2*npts:2, 7] = 1 |
|
|
|
b = np.reshape(xp.transpose(), [2*npts, 1]) |
|
|
|
k, _, _, _ = np.linalg.lstsq(A, b) |
|
|
|
R1 = k[0:3] |
|
R2 = k[4:7] |
|
sTx = k[3] |
|
sTy = k[7] |
|
s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2 |
|
t = np.stack([sTx, sTy], axis=0) |
|
|
|
return t, s |
|
|
|
|
|
def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None): |
|
w0, h0 = img.size |
|
w = (w0*s).astype(np.int32) |
|
h = (h0*s).astype(np.int32) |
|
left = (w/2 - target_size/2 + float((t[0] - w0/2)*s)).astype(np.int32) |
|
right = left + target_size |
|
up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32) |
|
below = up + target_size |
|
|
|
img = img.resize((w, h), resample=Image.BICUBIC) |
|
img = img.crop((left, up, right, below)) |
|
|
|
if mask is not None: |
|
mask = mask.resize((w, h), resample=Image.BICUBIC) |
|
mask = mask.crop((left, up, right, below)) |
|
|
|
lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] - |
|
t[1] + h0/2], axis=1)*s |
|
lm = lm - np.reshape( |
|
np.array([(w/2 - target_size/2), (h/2-target_size/2)]), [1, 2]) |
|
|
|
return img, lm, mask |
|
|
|
|
|
def extract_5p(lm): |
|
lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 |
|
lm5p = np.stack([lm[lm_idx[0], :], np.mean(lm[lm_idx[[1, 2]], :], 0), np.mean( |
|
lm[lm_idx[[3, 4]], :], 0), lm[lm_idx[5], :], lm[lm_idx[6], :]], axis=0) |
|
lm5p = lm5p[[1, 2, 0, 3, 4], :] |
|
return lm5p |
|
|
|
|
|
def align_img(img, lm, lm3D, mask=None, target_size=224., rescale_factor=102.): |
|
""" |
|
Return: |
|
transparams --numpy.array (raw_W, raw_H, scale, tx, ty) |
|
img_new --PIL.Image (target_size, target_size, 3) |
|
lm_new --numpy.array (68, 2), y direction is opposite to v direction |
|
mask_new --PIL.Image (target_size, target_size) |
|
|
|
Parameters: |
|
img --PIL.Image (raw_H, raw_W, 3) |
|
lm --numpy.array (68, 2), y direction is opposite to v direction |
|
lm3D --numpy.array (5, 3) |
|
mask --PIL.Image (raw_H, raw_W, 3) |
|
""" |
|
|
|
w0, h0 = img.size |
|
if lm.shape[0] != 5: |
|
lm5p = extract_5p(lm) |
|
else: |
|
lm5p = lm |
|
|
|
|
|
t, s = POS(lm5p.transpose(), lm3D.transpose()) |
|
s = rescale_factor/s |
|
|
|
|
|
img_new, lm_new, mask_new = resize_n_crop_img(img, lm, t, s, target_size=target_size, mask=mask) |
|
trans_params = np.array([w0, h0, s, t[0], t[1]]) |
|
|
|
return trans_params, img_new, lm_new, mask_new |
|
|