|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
class ConvNormRelu(nn.Module): |
|
def __init__(self, conv_type='1d', in_channels=3, out_channels=64, downsample=False, |
|
kernel_size=None, stride=None, padding=None, norm='BN', leaky=False): |
|
super().__init__() |
|
if kernel_size is None: |
|
if downsample: |
|
kernel_size, stride, padding = 4, 2, 1 |
|
else: |
|
kernel_size, stride, padding = 3, 1, 1 |
|
|
|
if conv_type == '2d': |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
bias=False, |
|
) |
|
if norm == 'BN': |
|
self.norm = nn.BatchNorm2d(out_channels) |
|
elif norm == 'IN': |
|
self.norm = nn.InstanceNorm2d(out_channels) |
|
else: |
|
raise NotImplementedError |
|
elif conv_type == '1d': |
|
self.conv = nn.Conv1d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
bias=False, |
|
) |
|
if norm == 'BN': |
|
self.norm = nn.BatchNorm1d(out_channels) |
|
elif norm == 'IN': |
|
self.norm = nn.InstanceNorm1d(out_channels) |
|
else: |
|
raise NotImplementedError |
|
nn.init.kaiming_normal_(self.conv.weight) |
|
|
|
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=False) if leaky else nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
if isinstance(self.norm, nn.InstanceNorm1d): |
|
x = self.norm(x.permute((0, 2, 1))).permute((0, 2, 1)) |
|
else: |
|
x = self.norm(x) |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class PoseSequenceDiscriminator(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.cfg = cfg |
|
leaky = self.cfg.MODEL.DISCRIMINATOR.LEAKY_RELU |
|
|
|
self.seq = nn.Sequential( |
|
ConvNormRelu('1d', cfg.MODEL.DISCRIMINATOR.INPUT_CHANNELS, 256, downsample=True, leaky=leaky), |
|
ConvNormRelu('1d', 256, 512, downsample=True, leaky=leaky), |
|
ConvNormRelu('1d', 512, 1024, kernel_size=3, stride=1, padding=1, leaky=leaky), |
|
nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1, bias=True) |
|
) |
|
|
|
def forward(self, x): |
|
x = x.reshape(x.size(0), x.size(1), -1).transpose(1, 2) |
|
x = self.seq(x) |
|
x = x.squeeze(1) |
|
return x |