Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DDIMScheduler, DiffusionPipeline | |
stable_inpiant_model_list = [ | |
"stabilityai/stable-diffusion-2-inpainting", | |
"runwayml/stable-diffusion-inpainting", | |
] | |
stable_prompt_list = ["a photo of a man.", "a photo of a girl."] | |
stable_negative_prompt_list = ["bad, ugly", "deformed"] | |
def stable_diffusion_inpaint( | |
dict: str, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
): | |
image = dict["image"].convert("RGB").resize((512, 512)) | |
mask_image = dict["mask"].convert("RGB").resize((512, 512)) | |
pipe = DiffusionPipeline.from_pretrained( | |
model_path, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe.to("cuda") | |
output = pipe( | |
prompt=prompt, | |
image=image, | |
mask_image=mask_image, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
).images | |
return output[0] | |
def stable_diffusion_inpaint_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
inpaint_image_file = gr.Image( | |
source="upload", | |
tool="sketch", | |
elem_id="image_upload", | |
type="pil", | |
label="Upload", | |
) | |
inpaint_model_id = gr.Dropdown( | |
choices=stable_inpiant_model_list, | |
value=stable_inpiant_model_list[0], | |
label="Inpaint Model Id", | |
) | |
inpaint_prompt = gr.Textbox( | |
lines=1, value=stable_prompt_list[0], label="Prompt" | |
) | |
inpaint_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label="Negative Prompt", | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
inpaint_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
inpaint_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
inpaint_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Image(label="Outputs") | |
inpaint_predict.click( | |
fn=stable_diffusion_inpaint, | |
inputs=[ | |
inpaint_image_file, | |
inpaint_model_id, | |
inpaint_prompt, | |
inpaint_negative_prompt, | |
inpaint_guidance_scale, | |
inpaint_num_inference_step, | |
], | |
outputs=output_image, | |
) | |