|
"""Redis memory provider.""" |
|
from __future__ import annotations |
|
|
|
from typing import Any |
|
|
|
import numpy as np |
|
import redis |
|
from colorama import Fore, Style |
|
from redis.commands.search.field import TextField, VectorField |
|
from redis.commands.search.indexDefinition import IndexDefinition, IndexType |
|
from redis.commands.search.query import Query |
|
|
|
from autogpt.llm_utils import create_embedding_with_ada |
|
from autogpt.logs import logger |
|
from autogpt.memory.base import MemoryProviderSingleton |
|
|
|
SCHEMA = [ |
|
TextField("data"), |
|
VectorField( |
|
"embedding", |
|
"HNSW", |
|
{"TYPE": "FLOAT32", "DIM": 1536, "DISTANCE_METRIC": "COSINE"}, |
|
), |
|
] |
|
|
|
|
|
class RedisMemory(MemoryProviderSingleton): |
|
def __init__(self, cfg): |
|
""" |
|
Initializes the Redis memory provider. |
|
|
|
Args: |
|
cfg: The config object. |
|
|
|
Returns: None |
|
""" |
|
redis_host = cfg.redis_host |
|
redis_port = cfg.redis_port |
|
redis_password = cfg.redis_password |
|
self.dimension = 1536 |
|
self.redis = redis.Redis( |
|
host=redis_host, |
|
port=redis_port, |
|
password=redis_password, |
|
db=0, |
|
) |
|
self.cfg = cfg |
|
|
|
|
|
try: |
|
self.redis.ping() |
|
except redis.ConnectionError as e: |
|
logger.typewriter_log( |
|
"FAILED TO CONNECT TO REDIS", |
|
Fore.RED, |
|
Style.BRIGHT + str(e) + Style.RESET_ALL, |
|
) |
|
logger.double_check( |
|
"Please ensure you have setup and configured Redis properly for use. " |
|
+ f"You can check out {Fore.CYAN + Style.BRIGHT}" |
|
f"https://github.com/Torantulino/Auto-GPT#redis-setup{Style.RESET_ALL}" |
|
" to ensure you've set up everything correctly." |
|
) |
|
exit(1) |
|
|
|
if cfg.wipe_redis_on_start: |
|
self.redis.flushall() |
|
try: |
|
self.redis.ft(f"{cfg.memory_index}").create_index( |
|
fields=SCHEMA, |
|
definition=IndexDefinition( |
|
prefix=[f"{cfg.memory_index}:"], index_type=IndexType.HASH |
|
), |
|
) |
|
except Exception as e: |
|
print("Error creating Redis search index: ", e) |
|
existing_vec_num = self.redis.get(f"{cfg.memory_index}-vec_num") |
|
self.vec_num = int(existing_vec_num.decode("utf-8")) if existing_vec_num else 0 |
|
|
|
def add(self, data: str) -> str: |
|
""" |
|
Adds a data point to the memory. |
|
|
|
Args: |
|
data: The data to add. |
|
|
|
Returns: Message indicating that the data has been added. |
|
""" |
|
if "Command Error:" in data: |
|
return "" |
|
vector = create_embedding_with_ada(data) |
|
vector = np.array(vector).astype(np.float32).tobytes() |
|
data_dict = {b"data": data, "embedding": vector} |
|
pipe = self.redis.pipeline() |
|
pipe.hset(f"{self.cfg.memory_index}:{self.vec_num}", mapping=data_dict) |
|
_text = ( |
|
f"Inserting data into memory at index: {self.vec_num}:\n" f"data: {data}" |
|
) |
|
self.vec_num += 1 |
|
pipe.set(f"{self.cfg.memory_index}-vec_num", self.vec_num) |
|
pipe.execute() |
|
return _text |
|
|
|
def get(self, data: str) -> list[Any] | None: |
|
""" |
|
Gets the data from the memory that is most relevant to the given data. |
|
|
|
Args: |
|
data: The data to compare to. |
|
|
|
Returns: The most relevant data. |
|
""" |
|
return self.get_relevant(data, 1) |
|
|
|
def clear(self) -> str: |
|
""" |
|
Clears the redis server. |
|
|
|
Returns: A message indicating that the memory has been cleared. |
|
""" |
|
self.redis.flushall() |
|
return "Obliviated" |
|
|
|
def get_relevant(self, data: str, num_relevant: int = 5) -> list[Any] | None: |
|
""" |
|
Returns all the data in the memory that is relevant to the given data. |
|
Args: |
|
data: The data to compare to. |
|
num_relevant: The number of relevant data to return. |
|
|
|
Returns: A list of the most relevant data. |
|
""" |
|
query_embedding = create_embedding_with_ada(data) |
|
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]" |
|
query = ( |
|
Query(base_query) |
|
.return_fields("data", "vector_score") |
|
.sort_by("vector_score") |
|
.dialect(2) |
|
) |
|
query_vector = np.array(query_embedding).astype(np.float32).tobytes() |
|
|
|
try: |
|
results = self.redis.ft(f"{self.cfg.memory_index}").search( |
|
query, query_params={"vector": query_vector} |
|
) |
|
except Exception as e: |
|
print("Error calling Redis search: ", e) |
|
return None |
|
return [result.data for result in results.docs] |
|
|
|
def get_stats(self): |
|
""" |
|
Returns: The stats of the memory index. |
|
""" |
|
return self.redis.ft(f"{self.cfg.memory_index}").info() |
|
|