Spaces:
Sleeping
Sleeping
JohnAlexander23
commited on
Commit
•
0ad2d2a
1
Parent(s):
51d22ab
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, AutoModelForObjectDetection
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib.patches as patches
|
9 |
+
import random
|
10 |
+
|
11 |
+
# Constants
|
12 |
+
EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'
|
13 |
+
THRESHOLD = 0.2
|
14 |
+
|
15 |
+
# Load model and processor
|
16 |
+
@st.cache_resource
|
17 |
+
def load_model():
|
18 |
+
model_id = 'onnx-community/yolov10m'
|
19 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
20 |
+
model = AutoModelForObjectDetection.from_pretrained(model_id)
|
21 |
+
return processor, model
|
22 |
+
|
23 |
+
processor, model = load_model()
|
24 |
+
|
25 |
+
# Function to detect objects in the image
|
26 |
+
def detect(image):
|
27 |
+
# Preprocess image
|
28 |
+
inputs = processor(images=image, return_tensors="pt")
|
29 |
+
|
30 |
+
# Predict bounding boxes
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
+
|
34 |
+
# Extract bounding boxes and labels
|
35 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
36 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=THRESHOLD)[0]
|
37 |
+
|
38 |
+
return results
|
39 |
+
|
40 |
+
# Function to render bounding boxes
|
41 |
+
def render_box(image, results):
|
42 |
+
plt.figure(figsize=(10, 10))
|
43 |
+
plt.imshow(image)
|
44 |
+
ax = plt.gca()
|
45 |
+
|
46 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
47 |
+
if score < THRESHOLD:
|
48 |
+
continue
|
49 |
+
|
50 |
+
color = tuple([random.random() for _ in range(3)]) # Random color for each box
|
51 |
+
xmin, ymin, xmax, ymax = box
|
52 |
+
|
53 |
+
rect = patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=2, edgecolor=color, facecolor='none')
|
54 |
+
ax.add_patch(rect)
|
55 |
+
plt.text(xmin, ymin, f"{processor.id2label[label.item()]}: {score:.2f}", color=color, fontsize=12, bbox=dict(facecolor='white', alpha=0.5))
|
56 |
+
|
57 |
+
plt.axis('off')
|
58 |
+
st.pyplot(plt)
|
59 |
+
|
60 |
+
# Streamlit app
|
61 |
+
st.title("Object Detection with Hugging Face Transformers")
|
62 |
+
|
63 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
64 |
+
|
65 |
+
if uploaded_file is not None:
|
66 |
+
image = Image.open(uploaded_file)
|
67 |
+
results = detect(image)
|
68 |
+
render_box(image, results)
|
69 |
+
else:
|
70 |
+
if st.button("Try Example Image"):
|
71 |
+
response = requests.get(EXAMPLE_URL)
|
72 |
+
image = Image.open(BytesIO(response.content))
|
73 |
+
results = detect(image)
|
74 |
+
render_box(image, results)
|