Spaces:
Runtime error
Runtime error
import numpy as np,parselmouth,torch,pdb | |
from time import time as ttime | |
import torch.nn.functional as F | |
from config import x_pad,x_query,x_center,x_max | |
import scipy.signal as signal | |
import pyworld,os,traceback,faiss | |
class VC(object): | |
def __init__(self,tgt_sr,device,is_half): | |
self.sr=16000#hubert输入采样率 | |
self.window=160#每帧点数 | |
self.t_pad=self.sr*x_pad#每条前后pad时间 | |
self.t_pad_tgt=tgt_sr*x_pad | |
self.t_pad2=self.t_pad*2 | |
self.t_query=self.sr*x_query#查询切点前后查询时间 | |
self.t_center=self.sr*x_center#查询切点位置 | |
self.t_max=self.sr*x_max#免查询时长阈值 | |
self.device=device | |
self.is_half=is_half | |
def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None): | |
time_step = self.window / self.sr * 1000 | |
f0_min = 50 | |
f0_max = 1100 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
if(f0_method=="pm"): | |
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac( | |
time_step=time_step / 1000, voicing_threshold=0.6, | |
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] | |
pad_size=(p_len - len(f0) + 1) // 2 | |
if(pad_size>0 or p_len - len(f0) - pad_size>0): | |
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') | |
elif(f0_method=="harvest"): | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=self.sr, | |
f0_ceil=f0_max, | |
f0_floor=f0_min, | |
frame_period=10, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) | |
f0 = signal.medfilt(f0, 3) | |
f0 *= pow(2, f0_up_key / 12) | |
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) | |
tf0=self.sr//self.window#每秒f0点数 | |
if (inp_f0 is not None): | |
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16") | |
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1]) | |
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0] | |
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape] | |
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) | |
f0bak = f0.copy() | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
f0_coarse = np.rint(f0_mel).astype(int) | |
return f0_coarse, f0bak#1-0 | |
def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy | |
feats = torch.from_numpy(audio0) | |
if(self.is_half):feats=feats.half() | |
else:feats=feats.float() | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) | |
inputs = { | |
"source": feats.to(self.device), | |
"padding_mask": padding_mask, | |
"output_layer": 9, # layer 9 | |
} | |
t0 = ttime() | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
feats = model.final_proj(logits[0]) | |
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0): | |
npy = feats[0].cpu().numpy() | |
if(self.is_half):npy=npy.astype("float32") | |
_, I = index.search(npy, 1) | |
npy=big_npy[I.squeeze()] | |
if(self.is_half):npy=npy.astype("float16") | |
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats | |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | |
t1 = ttime() | |
p_len = audio0.shape[0]//self.window | |
if(feats.shape[1]<p_len): | |
p_len=feats.shape[1] | |
if(pitch!=None and pitchf!=None): | |
pitch=pitch[:,:p_len] | |
pitchf=pitchf[:,:p_len] | |
p_len=torch.tensor([p_len],device=self.device).long() | |
with torch.no_grad(): | |
if(pitch!=None and pitchf!=None): | |
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) | |
else: | |
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) | |
del feats,p_len,padding_mask | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
t2 = ttime() | |
times[0] += (t1 - t0) | |
times[2] += (t2 - t1) | |
return audio1 | |
def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None): | |
if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0): | |
try: | |
index = faiss.read_index(file_index) | |
big_npy = np.load(file_big_npy) | |
except: | |
traceback.print_exc() | |
index=big_npy=None | |
else: | |
index=big_npy=None | |
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect') | |
opt_ts = [] | |
if(audio_pad.shape[0]>self.t_max): | |
audio_sum = np.zeros_like(audio) | |
for i in range(self.window): audio_sum += audio_pad[i:i - self.window] | |
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0]) | |
s = 0 | |
audio_opt=[] | |
t=None | |
t1=ttime() | |
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect') | |
p_len=audio_pad.shape[0]//self.window | |
inp_f0=None | |
if(hasattr(f0_file,'name') ==True): | |
try: | |
with open(f0_file.name,"r")as f: | |
lines=f.read().strip("\n").split("\n") | |
inp_f0=[] | |
for line in lines:inp_f0.append([float(i)for i in line.split(",")]) | |
inp_f0=np.array(inp_f0,dtype="float32") | |
except: | |
traceback.print_exc() | |
sid=torch.tensor(sid,device=self.device).unsqueeze(0).long() | |
pitch, pitchf=None,None | |
if(if_f0==1): | |
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0) | |
pitch = pitch[:p_len] | |
pitchf = pitchf[:p_len] | |
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long() | |
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float() | |
t2=ttime() | |
times[1] += (t2 - t1) | |
for t in opt_ts: | |
t=t//self.window*self.window | |
if (if_f0 == 1): | |
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) | |
else: | |
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) | |
s = t | |
if (if_f0 == 1): | |
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) | |
else: | |
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) | |
audio_opt=np.concatenate(audio_opt) | |
del pitch,pitchf,sid | |
if torch.cuda.is_available(): torch.cuda.empty_cache() | |
return audio_opt | |