MPEP_Dashboard / app.py
ZennyKenny's picture
remove unneeded object.
fb8096b verified
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import os
from typing import Dict, Tuple
from uuid import UUID
import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
import time
from huggingface_hub import restart_space
"""
This is the main file for the dashboard application. It contains the main function and the functions to obtain the data and create the charts.
It's designed as a template to recreate the dashboard for the prompt translation project of any language.
To create a new dashboard, you need several environment variables, that you can easily set in the HuggingFace Space that you are using to host the dashboard:
- SOURCE_DATASET: The dataset id of the source dataset
- SOURCE_WORKSPACE: The workspace id of the source dataset
- TARGET_RECORDS: The number of records that you have as a target to annotate. We usually set this to 500.
- ARGILLA_API_URL: Link to the Huggingface Space where the annotation effort is being hosted. For example, the Spanish one is https://somosnlp-dibt-prompt-translation-for-es.hf.space/
- ARGILLA_API_KEY: The API key to access the Huggingface Space. Please, write this as a secret in the Huggingface Space configuration.
"""
# Get env variable
HF_TOKEN = os.getenv("HF_TOKEN")
# Translation of legends and titles
ANNOTATED = 'Аннотации'
NUMBER_ANNOTATED = 'Всего аннотаций'
PENDING = 'Незавершенные'
NUMBER_ANNOTATORS = 'Количество аннотаторов'
NAME = 'Имя пользователя'
NUMBER_ANNOTATIONS = 'Количество аннотаций'
CATEGORY = 'Категория'
def restart():
gr.Info("Restarting space...")
restart_space("DIBT-Russian/MPEP_Dashboard", token=HF_TOKEN)
def obtain_source_target_datasets() -> (
Tuple[
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
]
):
"""
This function returns the source and target datasets to be used in the application.
Returns:
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
"""
# Obtain the public dataset and see how many pending records are there
source_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
)
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
# Obtain a list of users from the private workspace
# target_dataset = rg.FeedbackDataset.from_argilla(
# os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
# )
target_dataset = source_dataset.filter_by(response_status=["submitted"])
return filtered_source_dataset, target_dataset
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def donut_chart_total() -> alt.Chart:
"""
This function returns a donut chart with the progress of the total annotations.
Counts each record that has been annotated at least once.
Returns:
An altair chart with the donut chart.
"""
# Load your data
annotated_records = len(target_dataset)
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
# Prepare data for the donut chart
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": [ANNOTATED, PENDING],
"colors": ["#4682b4", "#e68c39"], # Blue for Completed, Orange for Remaining
}
)
domain = source['category'].tolist()
range_ = source['colors'].tolist()
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color(field="category", type="nominal", scale=alt.Scale(domain=domain, range=range_), legend=alt.Legend(title=CATEGORY, labelFontSize=8)),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart_remaining() -> alt.Chart:
"""
This function returns a KPI chart with the remaining amount of records to be annotated.
Returns:
An altair chart with the KPI chart.
"""
pending_records = int(os.getenv("TARGET_RECORDS")) - len(target_dataset)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [PENDING], "Value": [pending_records]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
.encode(text="Value:N")
.properties(title=PENDING, width=250, height=200)
)
return chart
def kpi_chart_submitted() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of records that have been annotated.
Returns:
An altair chart with the KPI chart.
"""
total = len(target_dataset)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [NUMBER_ANNOTATED], "Value": [total]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATED, width=250, height=200)
)
return chart
def kpi_chart_total_annotators() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame(
{"Category": [NUMBER_ANNOTATORS], "Value": [total_annotators]}
)
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATORS, width=250, height=200)
)
return chart
def render_hub_user_link(hub_id:str) -> str:
"""
This function returns a link to the user's profile on Hugging Face.
Args:
hub_id: The user's id on Hugging Face.
Returns:
A string with the link to the user's profile on Hugging Face.
"""
link = f"https://huggingface.co/{hub_id}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
def obtain_top_users(user_ids_annotations: Dict[str, int], N: int = 50) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=[NAME, NUMBER_ANNOTATIONS]
)
dataframe[NAME] = dataframe[NAME].apply(render_hub_user_link)
dataframe = dataframe.sort_values(by=NUMBER_ANNOTATIONS, ascending=False)
return dataframe.head(N)
def fetch_data() -> None:
"""
This function fetches the data from the source and target datasets and updates the global variables.
"""
print(f"Starting to fetch data: {datetime.now()}")
global source_dataset, target_dataset, user_ids_annotations, annotated, remaining, percentage_completed, top_dataframe
source_dataset, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
annotated = len(target_dataset)
remaining = int(os.getenv("TARGET_RECORDS")) - annotated
percentage_completed = round(
(annotated / int(os.getenv("TARGET_RECORDS"))) * 100, 1
)
# Print the current date and time
print(f"Data fetched: {datetime.now()}")
def get_top(N = 10) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
N: The number of users to be returned. 50 by default
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
return obtain_top_users(user_ids_annotations, N=N)
def main() -> None:
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY")
)
# Fetch the data initially
fetch_data()
# To avoid the orange border for the Gradio elements that are in constant loading
css = """
.generating {
border: none;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# 🇷🇺 Russian - Multilingual Prompt Evaluation Project
Hugging Face and @argilla занимаются краудсорсинговым проектом [Multilingual Prompt Evaluation Project](https://github.com/huggingface/data-is-better-together/tree/main/prompt_translation). Это открытый многоязычный бенчмарк для оценки языковых моделей и, конечно же, также для русского языка.
## 🎯 Цель состоит в том, чтобы перевести 500 промтпов
И как всегда: для этого нужны данные! Сообщество Hugging Face выбрало 500 лучших промптов, которые станут эталоном.
Кстати, промпт - это инструкция или задача для модели искусственного интеллекта.
**Вот почему нам нужна ваша помощь**: Переведите подсказки и добавьте свое имя пользователя в Зал Славы!
## 🤗 Как я смогу участвовать?
Участвовать легко! Перейдите в [DIBT Translation for Russian](https://huggingface.co/spaces/DIBT-Russian/prompt-translation-for-Russian), войдите в систему или создайте учетную запись Hugging Face, и можете приступать к работе.
Заранее спасибо! Пожалуйста, также обратите внимание: [NLLB-200](https://huggingface.co/facebook/nllb-200-distilled-600M) уже подготовил для вас предложение по переводу.
"""
)
gr.Markdown(
f"""
## 🚀 Текущий Прогресс
Это то, чего русскоязычное сообщество добилось на данный момент!
"""
)
with gr.Row():
kpi_submitted_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_submitted,
inputs=[],
outputs=[kpi_submitted_plot],
)
kpi_remaining_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_remaining,
inputs=[],
outputs=[kpi_remaining_plot],
)
donut_total_plot = gr.Plot(label="Plot")
demo.load(
donut_chart_total,
inputs=[],
outputs=[donut_total_plot],
)
gr.Markdown(
"""
## 🏆 Зал Славы
Авторы и количество сделанных ими аннотаций.
"""
)
with gr.Row():
kpi_hall_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_total_annotators, inputs=[], outputs=[kpi_hall_plot]
)
top_df_plot = gr.Dataframe(
headers=[NAME, NUMBER_ANNOTATIONS],
datatype=[
"markdown",
"number",
],
row_count=10,
col_count=(2, "fixed"),
interactive=False,
)
demo.load(get_top, None, [top_df_plot])
# Manage background refresh
scheduler = BackgroundScheduler()
job = scheduler.add_job(restart, "interval", minutes=30)
scheduler.start()
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()