DDingcheol commited on
Commit
2b99c72
โ€ข
1 Parent(s): 0f6c099

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -51
app.py CHANGED
@@ -1,26 +1,80 @@
1
  import gradio as gr
2
- from PIL import Image
 
 
3
  import numpy as np
 
4
  import tensorflow as tf
5
- from transformers import AutoFeatureExtractor, TFAutoModelForSemanticSegmentation
6
 
7
- # Hugging Face ๋ชจ๋ธ ๋ฐ ํ† ํฌ๋‚˜์ด์ €
8
- model_name = "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
9
- feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
10
- model = TFAutoModelForSemanticSegmentation.from_pretrained(model_name)
 
 
11
 
12
- def label_to_color_image(label, colormap):
13
- color_seg = np.zeros(
14
- (label.shape[0], label.shape[1], 3), dtype=np.uint8
15
- ) # height, width, 3
16
- for i in range(len(colormap)):
17
- color_seg[label.numpy() == i, :] = colormap[i]
18
- return color_seg
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- def draw_plot(pred_img, seg, colormap, labels_list):
21
- # your existing draw_plot function, unchanged
 
22
 
23
- def huggingface_model(input_img):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  input_img = Image.fromarray(input_img)
25
 
26
  inputs = feature_extractor(images=input_img, return_tensors="tf")
@@ -33,48 +87,24 @@ def huggingface_model(input_img):
33
  ) # We reverse the shape of `image` because `image.size` returns width and height.
34
  seg = tf.math.argmax(logits, axis=-1)[0]
35
 
36
- # Define the colormap for the cityscapes dataset
37
- colormap = [
38
- [128, 64, 128],
39
- [244, 35, 232],
40
- [70, 70, 70],
41
- [102, 102, 156],
42
- [190, 153, 153],
43
- [153, 153, 153],
44
- [250, 170, 30],
45
- [220, 220, 0],
46
- [107, 142, 35],
47
- [152, 251, 152],
48
- [0, 130, 180],
49
- [220, 20, 60],
50
- [255, 0, 0],
51
- [0, 0, 142],
52
- [0, 0, 70],
53
- [0, 60, 100],
54
- [0, 80, 100],
55
- [0, 0, 230],
56
- [119, 11, 32],
57
- ]
58
-
59
- color_seg = label_to_color_image(seg, colormap)
60
 
61
  # Show image + mask
62
  pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
63
  pred_img = pred_img.astype(np.uint8)
64
 
65
- # Draw plot
66
- fig = draw_plot(pred_img, seg, colormap, labels_list)
67
  return fig
68
 
69
- # ์—ฌ๋Ÿฌ๋ถ„์ด ๊ฐ€์ง„ labels.txt ํŒŒ์ผ์˜ ๋‚ด์šฉ์„ labels_list์— ํ• ๋‹นํ•˜์„ธ์š”.
70
- labels_list = ["label1", "label2", ...]
 
 
 
71
 
72
- demo = gr.Interface(
73
- fn=huggingface_model,
74
- inputs=gr.Image(shape=(1024, 1024)), # ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋Š” ๋ชจ๋ธ์˜ ์ž…๋ ฅ ํฌ๊ธฐ์— ๋งž๊ฒŒ ์กฐ์ ˆํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
75
- outputs=["plot"],
76
- examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
77
- allow_flagging='never'
78
- )
79
 
80
  demo.launch()
 
1
  import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
  import numpy as np
6
+ from PIL import Image
7
  import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
 
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
15
+ )
16
 
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [255, 0, 0],
21
+ [255, 187, 0],
22
+ [255, 228, 0],
23
+ [29, 219, 22],
24
+ [178, 204, 255],
25
+ [1, 0, 255],
26
+ [165, 102, 255],
27
+ [217, 65, 197],
28
+ [116, 116, 116],
29
+ [204, 114, 61],
30
+ [206, 242, 121],
31
+ [61, 183, 204],
32
+ [94, 94, 94],
33
+ [196, 183, 59],
34
+ [246, 246, 246],
35
+ [209, 178, 255],
36
+ [0, 87, 102],
37
+ [153, 0, 76]
38
+ ]
39
+
40
+ labels_list = []
41
+
42
+ with open(r'labels.txt', 'r') as fp:
43
+ for line in fp:
44
+ labels_list.append(line[:-1])
45
+
46
+ colormap = np.asarray(ade_palette())
47
 
48
+ def label_to_color_image(label):
49
+ if label.ndim != 2:
50
+ raise ValueError("Expect 2-D input label")
51
 
52
+ if np.max(label) >= len(colormap):
53
+ raise ValueError("label value too large.")
54
+ return colormap[label]
55
+
56
+ def draw_plot(pred_img, seg):
57
+ fig = plt.figure(figsize=(20, 15))
58
+
59
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
60
+
61
+ plt.subplot(grid_spec[0])
62
+ plt.imshow(pred_img)
63
+ plt.axis('off')
64
+ LABEL_NAMES = np.asarray(labels_list)
65
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
66
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
67
+
68
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
69
+ ax = plt.subplot(grid_spec[1])
70
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
71
+ ax.yaxis.tick_right()
72
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
73
+ plt.xticks([], [])
74
+ ax.tick_params(width=0.0, labelsize=25)
75
+ return fig
76
+
77
+ def sepia(input_img):
78
  input_img = Image.fromarray(input_img)
79
 
80
  inputs = feature_extractor(images=input_img, return_tensors="tf")
 
87
  ) # We reverse the shape of `image` because `image.size` returns width and height.
88
  seg = tf.math.argmax(logits, axis=-1)[0]
89
 
90
+ color_seg = np.zeros(
91
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
92
+ ) # height, width, 3
93
+ for label, color in enumerate(colormap):
94
+ color_seg[seg.numpy() == label, :] = color
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  # Show image + mask
97
  pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
98
  pred_img = pred_img.astype(np.uint8)
99
 
100
+ fig = draw_plot(pred_img, seg)
 
101
  return fig
102
 
103
+ demo = gr.Interface(fn=sepia,
104
+ inputs=gr.Image(shape=(400, 600)),
105
+ outputs=['plot'],
106
+ examples=["citiscpae-1.jpg", "citiscape-2.jpg"],
107
+ allow_flagging='never')
108
 
 
 
 
 
 
 
 
109
 
110
  demo.launch()