|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
from src.about import Tasks |
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
|
|
auto_eval_column_dict.append(["model_name", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["paper", ColumnContent, ColumnContent("Paper", "markdown", False)]) |
|
auto_eval_column_dict.append(["training_dataset_type", ColumnContent, ColumnContent("Training Dataset Type", "markdown", False, hidden=True)]) |
|
auto_eval_column_dict.append(["training_dataset", ColumnContent, ColumnContent("Training Dataset", "markdown", True, never_hidden=True)]) |
|
|
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) |
|
|
|
|
|
auto_eval_column_dict.append(["model_backbone_type", ColumnContent, ColumnContent("Model Backbone Type", "markdown", False, hidden=True)]) |
|
auto_eval_column_dict.append(["model_backbone", ColumnContent, ColumnContent("Model Backbone", "str", True)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "markdown", False)]) |
|
auto_eval_column_dict.append(["model_parameters", ColumnContent, ColumnContent("Parameter Count", "markdown", False)]) |
|
auto_eval_column_dict.append(["model_link", ColumnContent, ColumnContent("Link To Model", "markdown", True)]) |
|
auto_eval_column_dict.append(["testing_type", ColumnContent, ColumnContent("Testing Type", "str", False, hidden=True)]) |
|
|
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "str", True) |
|
precision = ColumnContent("precision", "str", True) |
|
training_dataset = ColumnContent("training_dataset", "str", True) |
|
testing_type = ColumnContent("testing_type", "str", True) |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
display_name: str = "" |
|
symbol: str = "" |
|
|
|
|
|
class ModelType(Enum): |
|
PT = ModelDetails(name="pretrained", symbol="π’") |
|
FT = ModelDetails(name="fine-tuned", symbol="πΆ") |
|
IFT = ModelDetails(name="instruction-tuned", symbol="β") |
|
RL = ModelDetails(name="RL-tuned", symbol="π¦") |
|
Other = ModelDetails(name="Other", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "πΆ" in type: |
|
return ModelType.FT |
|
if "pretrained" in type or "π’" in type: |
|
return ModelType.PT |
|
if "RL-tuned" in type or "π¦" in type: |
|
return ModelType.RL |
|
if "instruction-tuned" in type or "β" in type: |
|
return ModelType.IFT |
|
return ModelType.Other |
|
|
|
class Precision(Enum): |
|
float32 = "float32" |
|
Other = "Other" |
|
|
|
def from_str(precision): |
|
if precision in ["torch.float32", "float32"]: |
|
return Precision.float32 |
|
return Precision.Other |
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn)] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
|