db commited on
Commit
da674fb
·
2 Parent(s): 7ef7223 a51722b

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (1) hide show
  1. app.py +334 -0
app.py CHANGED
@@ -66,3 +66,337 @@ with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
66
  # vocab size: 65
67
  # train has 1003854 tokens
68
  # val has 111540 tokens
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  # vocab size: 65
67
  # train has 1003854 tokens
68
  # val has 111540 tokens
69
+
70
+
71
+ """
72
+ This training script can be run both on a single gpu in debug mode,
73
+ and also in a larger training run with distributed data parallel (ddp).
74
+
75
+ To run on a single GPU, example:
76
+ $ python train.py --batch_size=32 --compile=False
77
+
78
+ To run with DDP on 4 gpus on 1 node, example:
79
+ $ torchrun --standalone --nproc_per_node=4 train.py
80
+
81
+ To run with DDP on 4 gpus across 2 nodes, example:
82
+ - Run on the first (master) node with example IP 123.456.123.456:
83
+ $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py
84
+ - Run on the worker node:
85
+ $ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py
86
+ (If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1)
87
+ """
88
+
89
+ import os
90
+ import time
91
+ import math
92
+ import pickle
93
+ from contextlib import nullcontext
94
+
95
+ import numpy as np
96
+ import torch
97
+ from torch.nn.parallel import DistributedDataParallel as DDP
98
+ from torch.distributed import init_process_group, destroy_process_group
99
+
100
+ from model import GPTConfig, GPT
101
+
102
+ # -----------------------------------------------------------------------------
103
+ # default config values designed to train a gpt2 (124M) on OpenWebText
104
+ # I/O
105
+ out_dir = 'out'
106
+ eval_interval = 2000
107
+ log_interval = 1
108
+ eval_iters = 200
109
+ eval_only = False # if True, script exits right after the first eval
110
+ always_save_checkpoint = True # if True, always save a checkpoint after each eval
111
+ init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
112
+ # wandb logging
113
+ wandb_log = False # disabled by default
114
+ wandb_project = 'owt'
115
+ wandb_run_name = 'gpt2' # 'run' + str(time.time())
116
+ # data
117
+ dataset = 'openwebtext'
118
+ gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes
119
+ batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size
120
+ block_size = 1024
121
+ # model
122
+ n_layer = 12
123
+ n_head = 12
124
+ n_embd = 768
125
+ dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
126
+ bias = False # do we use bias inside LayerNorm and Linear layers?
127
+ # adamw optimizer
128
+ learning_rate = 6e-4 # max learning rate
129
+ max_iters = 600000 # total number of training iterations
130
+ weight_decay = 1e-1
131
+ beta1 = 0.9
132
+ beta2 = 0.95
133
+ grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
134
+ # learning rate decay settings
135
+ decay_lr = True # whether to decay the learning rate
136
+ warmup_iters = 2000 # how many steps to warm up for
137
+ lr_decay_iters = 600000 # should be ~= max_iters per Chinchilla
138
+ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
139
+ # DDP settings
140
+ backend = 'nccl' # 'nccl', 'gloo', etc.
141
+ # system
142
+ device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
143
+ dtype = 'bfloat16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
144
+ compile = True # use PyTorch 2.0 to compile the model to be faster
145
+ # -----------------------------------------------------------------------------
146
+ config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
147
+ exec(open('configurator.py').read()) # overrides from command line or config file
148
+ config = {k: globals()[k] for k in config_keys} # will be useful for logging
149
+ # -----------------------------------------------------------------------------
150
+
151
+ # various inits, derived attributes, I/O setup
152
+ ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
153
+ if ddp:
154
+ init_process_group(backend=backend)
155
+ ddp_rank = int(os.environ['RANK'])
156
+ ddp_local_rank = int(os.environ['LOCAL_RANK'])
157
+ ddp_world_size = int(os.environ['WORLD_SIZE'])
158
+ device = f'cuda:{ddp_local_rank}'
159
+ torch.cuda.set_device(device)
160
+ master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
161
+ seed_offset = ddp_rank # each process gets a different seed
162
+ assert gradient_accumulation_steps % torch.cuda.device_count() == 0
163
+ gradient_accumulation_steps //= torch.cuda.device_count()
164
+ else:
165
+ # if not ddp, we are running on a single gpu, and one process
166
+ master_process = True
167
+ seed_offset = 0
168
+ ddp_world_size = 1
169
+ tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
170
+ print(f"tokens per iteration will be: {tokens_per_iter:,}")
171
+
172
+ if master_process:
173
+ os.makedirs(out_dir, exist_ok=True)
174
+ torch.manual_seed(1337 + seed_offset)
175
+ torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
176
+ torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
177
+ device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
178
+ # note: float16 data type will automatically use a GradScaler
179
+ ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
180
+ ctx = nullcontext() if device_type == 'cpu' else torch.cuda.amp.autocast(dtype=torch.float16)
181
+
182
+ # poor man's data loader
183
+ data_dir = os.path.join('data', dataset)
184
+ train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
185
+ val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
186
+ def get_batch(split):
187
+ data = train_data if split == 'train' else val_data
188
+ ix = torch.randint(len(data) - block_size, (batch_size,))
189
+ x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
190
+ y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
191
+ if device_type == 'cuda':
192
+ # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
193
+ x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
194
+ else:
195
+ x, y = x.to(device), y.to(device)
196
+ return x, y
197
+
198
+ # init these up here, can override if init_from='resume' (i.e. from a checkpoint)
199
+ iter_num = 0
200
+ best_val_loss = 1e9
201
+
202
+ # attempt to derive vocab_size from the dataset
203
+ meta_path = os.path.join(data_dir, 'meta.pkl')
204
+ meta_vocab_size = None
205
+ if os.path.exists(meta_path):
206
+ with open(meta_path, 'rb') as f:
207
+ meta = pickle.load(f)
208
+ meta_vocab_size = meta['vocab_size']
209
+ print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
210
+
211
+ # model init
212
+ model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
213
+ bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
214
+ if init_from == 'scratch':
215
+ # init a new model from scratch
216
+ print("Initializing a new model from scratch")
217
+ # determine the vocab size we'll use for from-scratch training
218
+ if meta_vocab_size is None:
219
+ print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
220
+ model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
221
+ gptconf = GPTConfig(**model_args)
222
+ model = GPT(gptconf)
223
+ elif init_from == 'resume':
224
+ print(f"Resuming training from {out_dir}")
225
+ # resume training from a checkpoint.
226
+ ckpt_path = os.path.join(out_dir, 'ckpt.pt')
227
+ checkpoint = torch.load(ckpt_path, map_location=device)
228
+ checkpoint_model_args = checkpoint['model_args']
229
+ # force these config attributes to be equal otherwise we can't even resume training
230
+ # the rest of the attributes (e.g. dropout) can stay as desired from command line
231
+ for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
232
+ model_args[k] = checkpoint_model_args[k]
233
+ # create the model
234
+ gptconf = GPTConfig(**model_args)
235
+ model = GPT(gptconf)
236
+ state_dict = checkpoint['model']
237
+ # fix the keys of the state dictionary :(
238
+ # honestly no idea how checkpoints sometimes get this prefix, have to debug more
239
+ unwanted_prefix = '_orig_mod.'
240
+ for k,v in list(state_dict.items()):
241
+ if k.startswith(unwanted_prefix):
242
+ state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
243
+ model.load_state_dict(state_dict)
244
+ iter_num = checkpoint['iter_num']
245
+ best_val_loss = checkpoint['best_val_loss']
246
+ elif init_from.startswith('gpt2'):
247
+ print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
248
+ # initialize from OpenAI GPT-2 weights
249
+ override_args = dict(dropout=dropout)
250
+ model = GPT.from_pretrained(init_from, override_args)
251
+ # read off the created config params, so we can store them into checkpoint correctly
252
+ for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
253
+ model_args[k] = getattr(model.config, k)
254
+ # crop down the model block size if desired, using model surgery
255
+ if block_size < model.config.block_size:
256
+ model.crop_block_size(block_size)
257
+ model_args['block_size'] = block_size # so that the checkpoint will have the right value
258
+ model.to(device)
259
+
260
+ # initialize a GradScaler. If enabled=False scaler is a no-op
261
+ scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
262
+
263
+ # optimizer
264
+ optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
265
+ if init_from == 'resume':
266
+ optimizer.load_state_dict(checkpoint['optimizer'])
267
+ checkpoint = None # free up memory
268
+
269
+ # compile the model
270
+ if compile:
271
+ print("compiling the model... (takes a ~minute)")
272
+ unoptimized_model = model
273
+ model = torch.compile(model) # requires PyTorch 2.0
274
+
275
+ # wrap model into DDP container
276
+ if ddp:
277
+ model = DDP(model, device_ids=[ddp_local_rank])
278
+
279
+ # helps estimate an arbitrarily accurate loss over either split using many batches
280
+ @torch.no_grad()
281
+ def estimate_loss():
282
+ out = {}
283
+ model.eval()
284
+ for split in ['train', 'val']:
285
+ losses = torch.zeros(eval_iters)
286
+ for k in range(eval_iters):
287
+ X, Y = get_batch(split)
288
+ with ctx:
289
+ logits, loss = model(X, Y)
290
+ losses[k] = loss.item()
291
+ out[split] = losses.mean()
292
+ model.train()
293
+ return out
294
+
295
+ # learning rate decay scheduler (cosine with warmup)
296
+ def get_lr(it):
297
+ # 1) linear warmup for warmup_iters steps
298
+ if it < warmup_iters:
299
+ return learning_rate * it / warmup_iters
300
+ # 2) if it > lr_decay_iters, return min learning rate
301
+ if it > lr_decay_iters:
302
+ return min_lr
303
+ # 3) in between, use cosine decay down to min learning rate
304
+ decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
305
+ assert 0 <= decay_ratio <= 1
306
+ coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
307
+ return min_lr + coeff * (learning_rate - min_lr)
308
+
309
+ # logging
310
+ if wandb_log and master_process:
311
+ import wandb
312
+ wandb.init(project=wandb_project, name=wandb_run_name, config=config)
313
+
314
+ # training loop
315
+ X, Y = get_batch('train') # fetch the very first batch
316
+ t0 = time.time()
317
+ local_iter_num = 0 # number of iterations in the lifetime of this process
318
+ raw_model = model.module if ddp else model # unwrap DDP container if needed
319
+ running_mfu = -1.0
320
+ while True:
321
+
322
+ # determine and set the learning rate for this iteration
323
+ lr = get_lr(iter_num) if decay_lr else learning_rate
324
+ for param_group in optimizer.param_groups:
325
+ param_group['lr'] = lr
326
+
327
+ # evaluate the loss on train/val sets and write checkpoints
328
+ if iter_num % eval_interval == 0 and master_process:
329
+ losses = estimate_loss()
330
+ print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
331
+ if wandb_log:
332
+ wandb.log({
333
+ "iter": iter_num,
334
+ "train/loss": losses['train'],
335
+ "val/loss": losses['val'],
336
+ "lr": lr,
337
+ "mfu": running_mfu*100, # convert to percentage
338
+ })
339
+ if losses['val'] < best_val_loss or always_save_checkpoint:
340
+ best_val_loss = losses['val']
341
+ if iter_num > 0:
342
+ checkpoint = {
343
+ 'model': raw_model.state_dict(),
344
+ 'optimizer': optimizer.state_dict(),
345
+ 'model_args': model_args,
346
+ 'iter_num': iter_num,
347
+ 'best_val_loss': best_val_loss,
348
+ 'config': config,
349
+ }
350
+ print(f"saving checkpoint to {out_dir}")
351
+ torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt'))
352
+ if iter_num == 0 and eval_only:
353
+ break
354
+
355
+ # forward backward update, with optional gradient accumulation to simulate larger batch size
356
+ # and using the GradScaler if data type is float16
357
+ for micro_step in range(gradient_accumulation_steps):
358
+ if ddp:
359
+ # in DDP training we only need to sync gradients at the last micro step.
360
+ # the official way to do this is with model.no_sync() context manager, but
361
+ # I really dislike that this bloats the code and forces us to repeat code
362
+ # looking at the source of that context manager, it just toggles this variable
363
+ model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
364
+ with ctx:
365
+ logits, loss = model(X, Y)
366
+ loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
367
+ # immediately async prefetch next batch while model is doing the forward pass on the GPU
368
+ X, Y = get_batch('train')
369
+ # backward pass, with gradient scaling if training in fp16
370
+ scaler.scale(loss).backward()
371
+ # clip the gradient
372
+ if grad_clip != 0.0:
373
+ scaler.unscale_(optimizer)
374
+ torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
375
+ # step the optimizer and scaler if training in fp16
376
+ scaler.step(optimizer)
377
+ scaler.update()
378
+ # flush the gradients as soon as we can, no need for this memory anymore
379
+ optimizer.zero_grad(set_to_none=True)
380
+
381
+ # timing and logging
382
+ t1 = time.time()
383
+ dt = t1 - t0
384
+ t0 = t1
385
+ if iter_num % log_interval == 0 and master_process:
386
+ # get loss as float. note: this is a CPU-GPU sync point
387
+ # scale up to undo the division above, approximating the true total loss (exact would have been a sum)
388
+ lossf = loss.item() * gradient_accumulation_steps
389
+ if local_iter_num >= 5: # let the training loop settle a bit
390
+ mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
391
+ running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
392
+ print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
393
+ iter_num += 1
394
+ local_iter_num += 1
395
+
396
+ # termination conditions
397
+ if iter_num > max_iters:
398
+ break
399
+
400
+ if ddp:
401
+ destroy_process_group()
402
+