|
import os |
|
import requests |
|
import tiktoken |
|
import numpy as np |
|
|
|
|
|
input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt') |
|
if not os.path.exists(input_file_path): |
|
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt' |
|
with open(input_file_path, 'w') as f: |
|
f.write(requests.get(data_url).text) |
|
|
|
with open(input_file_path, 'r') as f: |
|
data = f.read() |
|
n = len(data) |
|
train_data = data[:int(n*0.9)] |
|
val_data = data[int(n*0.9):] |
|
|
|
|
|
enc = tiktoken.get_encoding("gpt2") |
|
train_ids = enc.encode_ordinary(train_data) |
|
val_ids = enc.encode_ordinary(val_data) |
|
print(f"train has {len(train_ids):,} tokens") |
|
print(f"val has {len(val_ids):,} tokens") |
|
|
|
|
|
train_ids = np.array(train_ids, dtype=np.uint16) |
|
val_ids = np.array(val_ids, dtype=np.uint16) |
|
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin')) |
|
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin')) |
|
|
|
|
|
|
|
|