Spaces:
Running
on
A10G
Running
on
A10G
""" | |
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py | |
""" | |
import argparse | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import gradio as gr | |
from video_llama.common.config import Config | |
from video_llama.common.dist_utils import get_rank | |
from video_llama.common.registry import registry | |
from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle | |
import decord | |
decord.bridge.set_bridge('torch') | |
#%% | |
# imports modules for registration | |
from video_llama.datasets.builders import * | |
from video_llama.models import * | |
from video_llama.processors import * | |
from video_llama.runners import * | |
from video_llama.tasks import * | |
#%% | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval.yaml', help="path to configuration file.") | |
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
print('Initializing Chat') | |
args = parse_args() | |
cfg = Config(args) | |
model_config = cfg.model_cfg | |
model_config.device_8bit = args.gpu_id | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) | |
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) | |
print('Initialization Finished') | |
# ======================================== | |
# Gradio Setting | |
# ======================================== | |
def gradio_reset(chat_state, img_list): | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list | |
def upload_imgorvideo(gr_video, gr_img, text_input, chat_state): | |
if gr_img is None and gr_video is None: | |
return None, None, None, gr.update(interactive=True), chat_state, None | |
elif gr_img is not None and gr_video is None: | |
print(gr_img) | |
chat_state = Conversation( | |
system= "You are able to understand the visual content that the user provides." | |
"Follow the instructions carefully and explain your answers in detail.", | |
roles=("Human", "Assistant"), | |
messages=[], | |
offset=0, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
) | |
img_list = [] | |
llm_message = chat.upload_img(gr_img, chat_state, img_list) | |
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list | |
elif gr_video is not None and gr_img is None: | |
print(gr_video) | |
chat_state = default_conversation.copy() | |
chat_state = Conversation( | |
system= "You are able to understand the visual content that the user provides." | |
"Follow the instructions carefully and explain your answers in detail.", | |
roles=("Human", "Assistant"), | |
messages=[], | |
offset=0, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
) | |
img_list = [] | |
llm_message = chat.upload_video(gr_video, chat_state, img_list) | |
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list | |
else: | |
# img_list = [] | |
return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None | |
def gradio_ask(user_message, chatbot, chat_state): | |
if len(user_message) == 0: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
chat.ask(user_message, chat_state) | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state | |
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature): | |
llm_message = chat.answer(conv=chat_state, | |
img_list=img_list, | |
num_beams=1, | |
temperature=temperature, | |
max_new_tokens=240, | |
max_length=512)[0] | |
chatbot[-1][1] = llm_message | |
print(chat_state.get_prompt()) | |
print(chat_state) | |
return chatbot, chat_state, img_list | |
title = """ | |
<h1 align="center"><a href="https://github.com/DAMO-NLP-SG/Video-LLaMA"><img src="https://s1.ax1x.com/2023/05/22/p9oQ0FP.jpg", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1> | |
<h1 align="center">Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding</h1> | |
<h5 align="center"> Introduction: Video-LLaMA is a multi-model large language model that achieves video-grounded conversations between humans and computers \ | |
by connecting language decoder with off-the-shelf unimodal pre-trained models. </h5> | |
<div style='display:flex; gap: 0.25rem; '> | |
<a href='https://github.com/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/Github-Code-success'></a> | |
<a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> | |
<a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> | |
<a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a> | |
<a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a> | |
</div> | |
Thank you for using the Video-LLaMA Demo Page! If you have any questions or feedback, feel free to contact us. | |
If you think Video-LLaMA interesting, please give us a star on GitHub. | |
Current online demo uses the 7B version of PandaGPT due to resource limitations. We have released \ | |
the 13B version on our GitHub repository. | |
""" | |
Note_markdown = (""" | |
### Note | |
Video-LLaMA is a prototype model and may have limitations in understanding complex scenes, long videos, or specific domains. | |
The output results may be influenced by input quality, limitations of the dataset, and the model's susceptibility to illusions. Please interpret the results with caution. | |
**Copyright 2023 Alibaba DAMO Academy.** | |
""") | |
#TODO show examples below | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
video = gr.Video() | |
image = gr.Image(type="pil") | |
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
clear = gr.Button("Restart") | |
num_beams = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=1, | |
step=1, | |
interactive=True, | |
label="beam search numbers)", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
audio = gr.Checkbox(interactive=True, value=False, label="Audio") | |
gr.Markdown(Note_markdown) | |
with gr.Column(): | |
chat_state = gr.State() | |
img_list = gr.State() | |
chatbot = gr.Chatbot(label='Video-LLaMA') | |
text_input = gr.Textbox(label='User', placeholder='Please upload your image/video first', interactive=False) | |
with gr.Column(): | |
gr.Examples(examples=[ | |
[f"examples/dog.jpg", "Which breed is this dog? "], | |
[f"examples/jonsnow.jpg", "Who's the man on the right? "], | |
[f"examples/statue_of_liberty.jpg", "Can you tell me about this building? "], | |
], inputs=[image, text_input]) | |
gr.Examples(examples=[ | |
[f"examples/skateboarding_dog.mp4", "What is the dog doing? "], | |
[f"examples/birthday.mp4", "What is the boy doing? "], | |
[f"examples/Iron_Man.mp4", "Is the guy in the video Iron Man? "], | |
], inputs=[video, text_input]) | |
upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state], [video, image, text_input, upload_button, chat_state, img_list]) | |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list] | |
) | |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False) | |
demo.launch(share=False, enable_queue=True) | |
# %% |