Spaces:
Running
on
A10G
Running
on
A10G
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import json | |
from typing import Dict | |
from omegaconf import OmegaConf | |
from video_llama.common.registry import registry | |
class Config: | |
def __init__(self, args): | |
self.config = {} | |
self.args = args | |
# Register the config and configuration for setup | |
registry.register("configuration", self) | |
user_config = self._build_opt_list(self.args.options) | |
config = OmegaConf.load(self.args.cfg_path) | |
runner_config = self.build_runner_config(config) | |
model_config = self.build_model_config(config, **user_config) | |
dataset_config = self.build_dataset_config(config) | |
# Validate the user-provided runner configuration | |
# model and dataset configuration are supposed to be validated by the respective classes | |
# [TODO] validate the model/dataset configuration | |
# self._validate_runner_config(runner_config) | |
# Override the default configuration with user options. | |
self.config = OmegaConf.merge( | |
runner_config, model_config, dataset_config, user_config | |
) | |
def _validate_runner_config(self, runner_config): | |
""" | |
This method validates the configuration, such that | |
1) all the user specified options are valid; | |
2) no type mismatches between the user specified options and the config. | |
""" | |
runner_config_validator = create_runner_config_validator() | |
runner_config_validator.validate(runner_config) | |
def _build_opt_list(self, opts): | |
opts_dot_list = self._convert_to_dot_list(opts) | |
return OmegaConf.from_dotlist(opts_dot_list) | |
def build_model_config(config, **kwargs): | |
model = config.get("model", None) | |
assert model is not None, "Missing model configuration file." | |
model_cls = registry.get_model_class(model.arch) | |
assert model_cls is not None, f"Model '{model.arch}' has not been registered." | |
model_type = kwargs.get("model.model_type", None) | |
if not model_type: | |
model_type = model.get("model_type", None) | |
# else use the model type selected by user. | |
assert model_type is not None, "Missing model_type." | |
model_config_path = model_cls.default_config_path(model_type=model_type) | |
model_config = OmegaConf.create() | |
# hierarchy override, customized config > default config | |
model_config = OmegaConf.merge( | |
model_config, | |
OmegaConf.load(model_config_path), | |
{"model": config["model"]}, | |
) | |
return model_config | |
def build_runner_config(config): | |
return {"run": config.run} | |
def build_dataset_config(config): | |
datasets = config.get("datasets", None) | |
if datasets is None: | |
raise KeyError( | |
"Expecting 'datasets' as the root key for dataset configuration." | |
) | |
dataset_config = OmegaConf.create() | |
for dataset_name in datasets: | |
builder_cls = registry.get_builder_class(dataset_name) | |
dataset_config_type = datasets[dataset_name].get("type", "default") | |
dataset_config_path = builder_cls.default_config_path( | |
type=dataset_config_type | |
) | |
# hierarchy override, customized config > default config | |
dataset_config = OmegaConf.merge( | |
dataset_config, | |
OmegaConf.load(dataset_config_path), | |
{"datasets": {dataset_name: config["datasets"][dataset_name]}}, | |
) | |
return dataset_config | |
def _convert_to_dot_list(self, opts): | |
if opts is None: | |
opts = [] | |
if len(opts) == 0: | |
return opts | |
has_equal = opts[0].find("=") != -1 | |
if has_equal: | |
return opts | |
return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])] | |
def get_config(self): | |
return self.config | |
def run_cfg(self): | |
return self.config.run | |
def datasets_cfg(self): | |
return self.config.datasets | |
def model_cfg(self): | |
return self.config.model | |
def pretty_print(self): | |
logging.info("\n===== Running Parameters =====") | |
logging.info(self._convert_node_to_json(self.config.run)) | |
logging.info("\n====== Dataset Attributes ======") | |
datasets = self.config.datasets | |
for dataset in datasets: | |
if dataset in self.config.datasets: | |
logging.info(f"\n======== {dataset} =======") | |
dataset_config = self.config.datasets[dataset] | |
logging.info(self._convert_node_to_json(dataset_config)) | |
else: | |
logging.warning(f"No dataset named '{dataset}' in config. Skipping") | |
logging.info(f"\n====== Model Attributes ======") | |
logging.info(self._convert_node_to_json(self.config.model)) | |
def _convert_node_to_json(self, node): | |
container = OmegaConf.to_container(node, resolve=True) | |
return json.dumps(container, indent=4, sort_keys=True) | |
def to_dict(self): | |
return OmegaConf.to_container(self.config) | |
def node_to_dict(node): | |
return OmegaConf.to_container(node) | |
class ConfigValidator: | |
""" | |
This is a preliminary implementation to centralize and validate the configuration. | |
May be altered in the future. | |
A helper class to validate configurations from yaml file. | |
This serves the following purposes: | |
1. Ensure all the options in the yaml are defined, raise error if not. | |
2. when type mismatches are found, the validator will raise an error. | |
3. a central place to store and display helpful messages for supported configurations. | |
""" | |
class _Argument: | |
def __init__(self, name, choices=None, type=None, help=None): | |
self.name = name | |
self.val = None | |
self.choices = choices | |
self.type = type | |
self.help = help | |
def __str__(self): | |
s = f"{self.name}={self.val}" | |
if self.type is not None: | |
s += f", ({self.type})" | |
if self.choices is not None: | |
s += f", choices: {self.choices}" | |
if self.help is not None: | |
s += f", ({self.help})" | |
return s | |
def __init__(self, description): | |
self.description = description | |
self.arguments = dict() | |
self.parsed_args = None | |
def __getitem__(self, key): | |
assert self.parsed_args is not None, "No arguments parsed yet." | |
return self.parsed_args[key] | |
def __str__(self) -> str: | |
return self.format_help() | |
def add_argument(self, *args, **kwargs): | |
""" | |
Assume the first argument is the name of the argument. | |
""" | |
self.arguments[args[0]] = self._Argument(*args, **kwargs) | |
def validate(self, config=None): | |
""" | |
Convert yaml config (dict-like) to list, required by argparse. | |
""" | |
for k, v in config.items(): | |
assert ( | |
k in self.arguments | |
), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}.""" | |
if self.arguments[k].type is not None: | |
try: | |
self.arguments[k].val = self.arguments[k].type(v) | |
except ValueError: | |
raise ValueError(f"{k} is not a valid {self.arguments[k].type}.") | |
if self.arguments[k].choices is not None: | |
assert ( | |
v in self.arguments[k].choices | |
), f"""{k} must be one of {self.arguments[k].choices}.""" | |
return config | |
def format_arguments(self): | |
return str([f"{k}" for k in sorted(self.arguments.keys())]) | |
def format_help(self): | |
# description + key-value pair string for each argument | |
help_msg = str(self.description) | |
return help_msg + ", available arguments: " + self.format_arguments() | |
def print_help(self): | |
# display help message | |
print(self.format_help()) | |
def create_runner_config_validator(): | |
validator = ConfigValidator(description="Runner configurations") | |
validator.add_argument( | |
"runner", | |
type=str, | |
choices=["runner_base", "runner_iter"], | |
help="""Runner to use. The "runner_base" uses epoch-based training while iter-based | |
runner runs based on iters. Default: runner_base""", | |
) | |
# add argumetns for training dataset ratios | |
validator.add_argument( | |
"train_dataset_ratios", | |
type=Dict[str, float], | |
help="""Ratios of training dataset. This is used in iteration-based runner. | |
Do not support for epoch-based runner because how to define an epoch becomes tricky. | |
Default: None""", | |
) | |
validator.add_argument( | |
"max_iters", | |
type=float, | |
help="Maximum number of iterations to run.", | |
) | |
validator.add_argument( | |
"max_epoch", | |
type=int, | |
help="Maximum number of epochs to run.", | |
) | |
# add arguments for iters_per_inner_epoch | |
validator.add_argument( | |
"iters_per_inner_epoch", | |
type=float, | |
help="Number of iterations per inner epoch. This is required when runner is runner_iter.", | |
) | |
lr_scheds_choices = registry.list_lr_schedulers() | |
validator.add_argument( | |
"lr_sched", | |
type=str, | |
choices=lr_scheds_choices, | |
help="Learning rate scheduler to use, from {}".format(lr_scheds_choices), | |
) | |
task_choices = registry.list_tasks() | |
validator.add_argument( | |
"task", | |
type=str, | |
choices=task_choices, | |
help="Task to use, from {}".format(task_choices), | |
) | |
# add arguments for init_lr | |
validator.add_argument( | |
"init_lr", | |
type=float, | |
help="Initial learning rate. This will be the learning rate after warmup and before decay.", | |
) | |
# add arguments for min_lr | |
validator.add_argument( | |
"min_lr", | |
type=float, | |
help="Minimum learning rate (after decay).", | |
) | |
# add arguments for warmup_lr | |
validator.add_argument( | |
"warmup_lr", | |
type=float, | |
help="Starting learning rate for warmup.", | |
) | |
# add arguments for learning rate decay rate | |
validator.add_argument( | |
"lr_decay_rate", | |
type=float, | |
help="Learning rate decay rate. Required if using a decaying learning rate scheduler.", | |
) | |
# add arguments for weight decay | |
validator.add_argument( | |
"weight_decay", | |
type=float, | |
help="Weight decay rate.", | |
) | |
# add arguments for training batch size | |
validator.add_argument( | |
"batch_size_train", | |
type=int, | |
help="Training batch size.", | |
) | |
# add arguments for evaluation batch size | |
validator.add_argument( | |
"batch_size_eval", | |
type=int, | |
help="Evaluation batch size, including validation and testing.", | |
) | |
# add arguments for number of workers for data loading | |
validator.add_argument( | |
"num_workers", | |
help="Number of workers for data loading.", | |
) | |
# add arguments for warm up steps | |
validator.add_argument( | |
"warmup_steps", | |
type=int, | |
help="Number of warmup steps. Required if a warmup schedule is used.", | |
) | |
# add arguments for random seed | |
validator.add_argument( | |
"seed", | |
type=int, | |
help="Random seed.", | |
) | |
# add arguments for output directory | |
validator.add_argument( | |
"output_dir", | |
type=str, | |
help="Output directory to save checkpoints and logs.", | |
) | |
# add arguments for whether only use evaluation | |
validator.add_argument( | |
"evaluate", | |
help="Whether to only evaluate the model. If true, training will not be performed.", | |
) | |
# add arguments for splits used for training, e.g. ["train", "val"] | |
validator.add_argument( | |
"train_splits", | |
type=list, | |
help="Splits to use for training.", | |
) | |
# add arguments for splits used for validation, e.g. ["val"] | |
validator.add_argument( | |
"valid_splits", | |
type=list, | |
help="Splits to use for validation. If not provided, will skip the validation.", | |
) | |
# add arguments for splits used for testing, e.g. ["test"] | |
validator.add_argument( | |
"test_splits", | |
type=list, | |
help="Splits to use for testing. If not provided, will skip the testing.", | |
) | |
# add arguments for accumulating gradient for iterations | |
validator.add_argument( | |
"accum_grad_iters", | |
type=int, | |
help="Number of iterations to accumulate gradient for.", | |
) | |
# ====== distributed training ====== | |
validator.add_argument( | |
"device", | |
type=str, | |
choices=["cpu", "cuda"], | |
help="Device to use. Support 'cuda' or 'cpu' as for now.", | |
) | |
validator.add_argument( | |
"world_size", | |
type=int, | |
help="Number of processes participating in the job.", | |
) | |
validator.add_argument("dist_url", type=str) | |
validator.add_argument("distributed", type=bool) | |
# add arguments to opt using distributed sampler during evaluation or not | |
validator.add_argument( | |
"use_dist_eval_sampler", | |
type=bool, | |
help="Whether to use distributed sampler during evaluation or not.", | |
) | |
# ====== task specific ====== | |
# generation task specific arguments | |
# add arguments for maximal length of text output | |
validator.add_argument( | |
"max_len", | |
type=int, | |
help="Maximal length of text output.", | |
) | |
# add arguments for minimal length of text output | |
validator.add_argument( | |
"min_len", | |
type=int, | |
help="Minimal length of text output.", | |
) | |
# add arguments number of beams | |
validator.add_argument( | |
"num_beams", | |
type=int, | |
help="Number of beams used for beam search.", | |
) | |
# vqa task specific arguments | |
# add arguments for number of answer candidates | |
validator.add_argument( | |
"num_ans_candidates", | |
type=int, | |
help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""", | |
) | |
# add arguments for inference method | |
validator.add_argument( | |
"inference_method", | |
type=str, | |
choices=["genearte", "rank"], | |
help="""Inference method to use for question answering. If rank, requires a answer list.""", | |
) | |
# ====== model specific ====== | |
validator.add_argument( | |
"k_test", | |
type=int, | |
help="Number of top k most similar samples from ITC/VTC selection to be tested.", | |
) | |
return validator | |