Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,45 @@
|
|
1 |
import argparse
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
|
|
4 |
import commons
|
5 |
import utils
|
6 |
-
import
|
|
|
|
|
7 |
from models import SynthesizerTrn
|
|
|
8 |
from text.symbols import symbols
|
9 |
-
from
|
10 |
-
import numpy as np
|
11 |
-
import os
|
12 |
import translators.server as tss
|
13 |
import psutil
|
14 |
from datetime import datetime
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
18 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
19 |
max_len = 150
|
@@ -105,6 +131,24 @@ def infer(text_raw, character, language, duration, noise_scale, noise_scale_w):
|
|
105 |
show_memory_info(str(currentDateAndTime) + " infer调用后")
|
106 |
return (text, (22050, audio))
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
if __name__ == "__main__":
|
109 |
parser = argparse.ArgumentParser()
|
110 |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
@@ -135,7 +179,9 @@ if __name__ == "__main__":
|
|
135 |
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w')
|
136 |
with gr.Column():
|
137 |
text_output = gr.Textbox(label="Output Text")
|
138 |
-
audio_output = gr.Audio(label="Output
|
|
|
|
|
139 |
btn = gr.Button("Generate!")
|
140 |
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown,
|
141 |
duration_slider, noise_scale_slider, noise_scale_w_slider],
|
|
|
1 |
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
import librosa
|
8 |
+
import numpy as np
|
9 |
import torch
|
10 |
+
from torch import no_grad, LongTensor
|
11 |
import commons
|
12 |
import utils
|
13 |
+
import gradio as gr
|
14 |
+
import gradio.utils as gr_utils
|
15 |
+
import gradio.processing_utils as gr_processing_utils
|
16 |
from models import SynthesizerTrn
|
17 |
+
from text import text_to_sequence, _clean_text
|
18 |
from text.symbols import symbols
|
19 |
+
from mel_processing import spectrogram_torch
|
|
|
|
|
20 |
import translators.server as tss
|
21 |
import psutil
|
22 |
from datetime import datetime
|
23 |
|
24 |
+
def audio_postprocess(self, y):
|
25 |
+
if y is None:
|
26 |
+
return None
|
27 |
+
|
28 |
+
if gr_utils.validate_url(y):
|
29 |
+
file = gr_processing_utils.download_to_file(y, dir=self.temp_dir)
|
30 |
+
elif isinstance(y, tuple):
|
31 |
+
sample_rate, data = y
|
32 |
+
file = tempfile.NamedTemporaryFile(
|
33 |
+
suffix=".wav", dir=self.temp_dir, delete=False
|
34 |
+
)
|
35 |
+
gr_processing_utils.audio_to_file(sample_rate, data, file.name)
|
36 |
+
else:
|
37 |
+
file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir)
|
38 |
|
39 |
+
return gr_processing_utils.encode_url_or_file_to_base64(file.name)
|
40 |
+
|
41 |
+
|
42 |
+
gr.Audio.postprocess = audio_postprocess
|
43 |
|
44 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
45 |
max_len = 150
|
|
|
131 |
show_memory_info(str(currentDateAndTime) + " infer调用后")
|
132 |
return (text, (22050, audio))
|
133 |
|
134 |
+
download_audio_js = """
|
135 |
+
() =>{{
|
136 |
+
let root = document.querySelector("body > gradio-app");
|
137 |
+
if (root.shadowRoot != null)
|
138 |
+
root = root.shadowRoot;
|
139 |
+
let audio = root.querySelector("#{audio_id}").querySelector("audio");
|
140 |
+
if (audio == undefined)
|
141 |
+
return;
|
142 |
+
audio = audio.src;
|
143 |
+
let oA = document.createElement("a");
|
144 |
+
oA.download = Math.floor(Math.random()*100000000)+'.wav';
|
145 |
+
oA.href = audio;
|
146 |
+
document.body.appendChild(oA);
|
147 |
+
oA.click();
|
148 |
+
oA.remove();
|
149 |
+
}}
|
150 |
+
"""
|
151 |
+
|
152 |
if __name__ == "__main__":
|
153 |
parser = argparse.ArgumentParser()
|
154 |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
|
|
179 |
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w')
|
180 |
with gr.Column():
|
181 |
text_output = gr.Textbox(label="Output Text")
|
182 |
+
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
183 |
+
download = gr.Button("Download Audio")
|
184 |
+
download.click(None, [], [], _js=download_audio_js.format(audio_id="tts-audio"))
|
185 |
btn = gr.Button("Generate!")
|
186 |
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown,
|
187 |
duration_slider, noise_scale_slider, noise_scale_w_slider],
|