Spaces:
Runtime error
Runtime error
# Initialize a retriever using Qdrant and SentenceTransformer embeddings | |
from langchain.vectorstores import Qdrant | |
from langchain.retrievers import EnsembleRetriever | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from qdrant_client import QdrantClient | |
import pandas as pd | |
import gradio as gr | |
embeddings = SentenceTransformerEmbeddings(model_name='sentence-transformers/clip-ViT-B-32') | |
def get_results(search_results): | |
filtered_img_ids = [doc.metadata.get("image_id") for doc in search_results] | |
return filtered_img_ids | |
vector_db_key = user_secrets.get_secret("vector_db_key") | |
client = QdrantClient( | |
url="https://763bc1da-0673-4535-91ac-b5538ec0287f.us-east4-0.gcp.cloud.qdrant.io:6333", | |
api_key='UOqiBgqhhu8BBWP98mwjGl7h4IhL2vMAqzO4EI9PEB66A50n9GoIiQ', | |
) # Persists changes to disk, fast prototyping | |
COLLECTION_NAME="semantic_image_search" | |
dense_vector_retriever = Qdrant(client, COLLECTION_NAME, embeddings) | |
images_data = pd.read_csv("/kaggle/input/fashion-product-images-dataset/fashion-dataset/images.csv", on_bad_lines='skip') | |
def get_link(query): | |
Search_Query = query | |
neutral_retiever = EnsembleRetriever(retrievers=[dense_vector_retriever.as_retriever()]) | |
result = neutral_retiever.get_relevant_documents(Search_Query) | |
filtered_images = get_results(result) | |
filtered_img_ids = [doc.metadata.get("image_id") for doc in result] | |
links = [images_data.loc[id, 'link'] for id in filtered_img_ids] | |
# final = '[' + ','.join(links) + ']' | |
return links | |
# print(get_link("black shirt for men")) | |
gr.Interface(fn = get_link, inputs = 'textbox', outputs = 'textbox').launch() | |