studio_V1 / app.py
qqwjq1981's picture
Update app.py
39837b9 verified
raw
history blame
28.8 kB
import numpy as np
import re
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
ImageClip,
VideoFileClip,
TextClip,
CompositeVideoClip,
CompositeAudioClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips
)
from PIL import Image, ImageDraw, ImageFont
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
import whisperx
import time
import os
import openai
from openai import OpenAI
import traceback
from TTS.api import TTS
import torch
from TTS.tts.configs.xtts_config import XttsConfig
from pydub import AudioSegment
from pyannote.audio import Pipeline
import traceback
import wave
logger = logging.getLogger(__name__)
# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
# torch.serialization.add_safe_globals([XttsConfig])
# Load XTTS model
try:
print("πŸ”„ Loading XTTS model...")
tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
print("βœ… XTTS model loaded successfully.")
except Exception as e:
print("❌ Error loading XTTS model:")
traceback.print_exc()
raise e
logger.info(gr.__version__)
client = OpenAI(
api_key= os.environ.get("openAI_api_key"), # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")
# def silence(duration, fps=44100):
# """
# Returns a silent AudioClip of the specified duration.
# """
# return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
# def count_words_or_characters(text):
# # Count non-Chinese words
# non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
# # Count Chinese characters
# chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
# return non_chinese_words + chinese_chars
# # Define the passcode
# PASSCODE = "show_feedback_db"
# css = """
# /* Adjust row height */
# .dataframe-container tr {
# height: 50px !important;
# }
# /* Ensure text wrapping and prevent overflow */
# .dataframe-container td {
# white-space: normal !important;
# word-break: break-word !important;
# }
# /* Set column widths */
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
# width: 6%; /* Start column */
# }
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
# width: 47%; /* Original text */
# }
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
# width: 47%; /* Translated text */
# }
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
# display: none !important;
# }
# """
# # Function to save feedback or provide access to the database file
# def handle_feedback(feedback):
# feedback = feedback.strip() # Clean up leading/trailing whitespace
# if not feedback:
# return "Feedback cannot be empty.", None
# if feedback == PASSCODE:
# # Provide access to the feedback.db file
# return "Access granted! Download the database file below.", "feedback.db"
# else:
# # Save feedback to the database
# with sqlite3.connect("feedback.db") as conn:
# cursor = conn.cursor()
# cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
# cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
# conn.commit()
# return "Thank you for your feedback!", None
# # Configure logging
# logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
# logger = logging.getLogger(__name__)
# logger.info(f"MoviePy Version: {moviepy.__version__}")
# # def segment_background_audio(audio_path, output_path="background_segments.wav"):
# # # Step 2: Initialize pyannote voice activity detection pipeline (you need Hugging Face token)
# # pipeline = Pipeline.from_pretrained(
# # "pyannote/voice-activity-detection",
# # use_auth_token=hf_api_key
# # )
# # # Step 3: Run VAD to get speech segments
# # vad_result = pipeline(audio_path)
# # print(f"Detected speech segments: {vad_result}")
# # # Step 4: Load full audio and subtract speech segments
# # full_audio = AudioSegment.from_wav(audio_path)
# # background_audio = AudioSegment.silent(duration=len(full_audio))
# # for segment in vad_result.itersegments():
# # start_ms = int(segment.start * 1000)
# # end_ms = int(segment.end * 1000)
# # # Remove speech by muting that portion
# # background_audio = background_audio.overlay(AudioSegment.silent(duration=end_ms - start_ms), position=start_ms)
# # # Step 5: Subtract background_audio from full_audio
# # result_audio = full_audio.overlay(background_audio)
# # # Step 6: Export non-speech segments
# # result_audio.export(output_path, format="wav")
# # print(f"Saved non-speech (background) audio to: {output_path}")
# # return True
# def transcribe_video_with_speakers(video_path):
# # Extract audio from video
# video = VideoFileClip(video_path)
# audio_path = "audio.wav"
# video.audio.write_audiofile(audio_path)
# logger.info(f"Audio extracted from video: {audio_path}")
# # segment_result = segment_background_audio(audio_path)
# # print(f"Saved non-speech (background) audio to local")
# # Set up device
# device = "cuda" if torch.cuda.is_available() else "cpu"
# logger.info(f"Using device: {device}")
# try:
# # Load a medium model with float32 for broader compatibility
# model = whisperx.load_model("medium", device=device, compute_type="float32")
# logger.info("WhisperX model loaded")
# # Transcribe
# result = model.transcribe(audio_path, chunk_size=5, print_progress = True)
# logger.info("Audio transcription completed")
# # Get the detected language
# detected_language = result["language"]
# logger.debug(f"Detected language: {detected_language}")
# # Alignment
# model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
# result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
# logger.info("Transcription alignment completed")
# # Diarization (works independently of Whisper model size)
# diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
# diarize_segments = diarize_model(audio_path)
# logger.info("Speaker diarization completed")
# # Assign speakers
# result = whisperx.assign_word_speakers(diarize_segments, result)
# logger.info("Speakers assigned to transcribed segments")
# except Exception as e:
# logger.error(f"❌ WhisperX pipeline failed: {e}")
# # Extract timestamps, text, and speaker IDs
# transcript_with_speakers = [
# {
# "start": segment["start"],
# "end": segment["end"],
# "text": segment["text"],
# "speaker": segment["speaker"]
# }
# for segment in result["segments"]
# ]
# # Collect audio for each speaker
# speaker_audio = {}
# for segment in result["segments"]:
# speaker = segment["speaker"]
# if speaker not in speaker_audio:
# speaker_audio[speaker] = []
# speaker_audio[speaker].append((segment["start"], segment["end"]))
# # Collapse and truncate speaker audio
# speaker_sample_paths = {}
# audio_clip = AudioFileClip(audio_path)
# for speaker, segments in speaker_audio.items():
# speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
# combined_clip = concatenate_audioclips(speaker_clips)
# truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
# sample_path = f"speaker_{speaker}_sample.wav"
# truncated_clip.write_audiofile(sample_path)
# speaker_sample_paths[speaker] = sample_path
# logger.info(f"Created sample for {speaker}: {sample_path}")
# # Clean up
# video.close()
# audio_clip.close()
# os.remove(audio_path)
# return transcript_with_speakers, detected_language
# # Function to get the appropriate translation model based on target language
# def get_translation_model(source_language, target_language):
# """
# Get the translation model based on the source and target language.
# Parameters:
# - target_language (str): The language to translate the content into (e.g., 'es', 'fr').
# - source_language (str): The language of the input content (default is 'en' for English).
# Returns:
# - str: The translation model identifier.
# """
# # List of allowable languages
# allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
# # Validate source and target languages
# if source_language not in allowable_languages:
# logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
# # Return a default model if source language is invalid
# source_language = "en" # Default to 'en'
# if target_language not in allowable_languages:
# logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
# # Return a default model if target language is invalid
# target_language = "zh" # Default to 'zh'
# if source_language == target_language:
# source_language = "en" # Default to 'en'
# target_language = "zh" # Default to 'zh'
# # Return the model using string concatenation
# return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
# def translate_single_entry(entry, translator):
# original_text = entry["text"]
# translated_text = translator(original_text)[0]['translation_text']
# return {
# "start": entry["start"],
# "original": original_text,
# "translated": translated_text,
# "end": entry["end"],
# "speaker": entry["speaker"]
# }
# def translate_text(transcription_json, source_language, target_language):
# # Load the translation model for the specified target language
# translation_model_id = get_translation_model(source_language, target_language)
# logger.debug(f"Translation model: {translation_model_id}")
# translator = pipeline("translation", model=translation_model_id)
# # Use ThreadPoolExecutor to parallelize translations
# with concurrent.futures.ThreadPoolExecutor() as executor:
# # Submit all translation tasks and collect results
# translate_func = lambda entry: translate_single_entry(entry, translator)
# translated_json = list(executor.map(translate_func, transcription_json))
# # Sort the translated_json by start time
# translated_json.sort(key=lambda x: x["start"])
# # Log the components being added to translated_json
# for entry in translated_json:
# logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
# entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])
# return translated_json
# def update_translations(file, edited_table, mode):
# """
# Update the translations based on user edits in the Gradio Dataframe.
# """
# output_video_path = "output_video.mp4"
# logger.debug(f"Editable Table: {edited_table}")
# if file is None:
# logger.info("No file uploaded. Please upload a video/audio file.")
# return None, [], None, "No file uploaded. Please upload a video/audio file."
# try:
# start_time = time.time() # Start the timer
# # Convert the edited_table (list of lists) back to list of dictionaries
# updated_translations = [
# {
# "start": row["start"], # Access by column name
# "original": row["original"],
# "translated": row["translated"],
# "end": row["end"]
# }
# for _, row in edited_table.iterrows()
# ]
# # Call the function to process the video with updated translations
# add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")
# # Calculate elapsed time
# elapsed_time = time.time() - start_time
# elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
# return output_video_path, elapsed_time_display
# except Exception as e:
# raise ValueError(f"Error updating translations: {e}")
# def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
# try:
# subtitle_width = int(video_width * 0.8)
# subtitle_font_size = int(video_height // 20)
# font = ImageFont.truetype(font_path, subtitle_font_size)
# dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
# draw = ImageDraw.Draw(dummy_img)
# lines = []
# line = ""
# for word in text.split():
# test_line = f"{line} {word}".strip()
# bbox = draw.textbbox((0, 0), test_line, font=font)
# w = bbox[2] - bbox[0]
# if w <= subtitle_width - 10:
# line = test_line
# else:
# lines.append(line)
# line = word
# lines.append(line)
# line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
# total_height = sum(line_heights) + (len(lines) - 1) * 5
# img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
# draw = ImageDraw.Draw(img)
# y = 0
# for idx, line in enumerate(lines):
# bbox = draw.textbbox((0, 0), line, font=font)
# w = bbox[2] - bbox[0]
# draw.text(((subtitle_width - w) // 2, y), line, font=font, fill="yellow")
# y += line_heights[idx] + 5
# img_np = np.array(img) # <- βœ… Fix: convert to NumPy
# txt_clip = ImageClip(img_np).set_start(start_time).set_duration(end_time - start_time).set_position("bottom").set_opacity(0.8)
# return txt_clip
# except Exception as e:
# logger.error(f"\u274c Failed to create subtitle clip: {e}")
# return None
# def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, font_path, speaker_sample_paths=None):
# logger.debug(f"Processing entry {i}: {entry}")
# error_message = None
# try:
# txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
# except Exception as e:
# error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
# logger.error(error_message)
# txt_clip = None
# audio_segment = None
# if add_voiceover:
# try:
# segment_audio_path = f"segment_{i}_voiceover.wav"
# desired_duration = entry["end"] - entry["start"]
# speaker = entry.get("speaker", "default")
# speaker_wav_path = f"speaker_{speaker}_sample.wav"
# output_path, status_msg, tts_error = generate_voiceover_clone([entry], desired_duration, target_language, speaker_wav_path, segment_audio_path)
# if tts_error:
# error_message = error_message + " | " + tts_error if error_message else tts_error
# if not output_path or not os.path.exists(segment_audio_path):
# raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")
# audio_clip = AudioFileClip(segment_audio_path)
# logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")
# if audio_clip.duration < desired_duration:
# silence_duration = desired_duration - audio_clip.duration
# audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
# logger.info(f"Padded audio with {silence_duration} seconds of silence.")
# audio_segment = audio_clip.set_start(entry["start"]).set_duration(desired_duration)
# except Exception as e:
# err = f"❌ Failed to generate audio segment for entry {i}: {e}"
# logger.error(err)
# error_message = error_message + " | " + err if error_message else err
# audio_segment = None
# return i, txt_clip, audio_segment, error_message
# def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
# video = VideoFileClip(video_path)
# font_path = "./NotoSansSC-Regular.ttf"
# text_clips = []
# audio_segments = []
# error_messages = []
# with concurrent.futures.ThreadPoolExecutor() as executor:
# futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language, font_path, speaker_sample_paths)
# for i, entry in enumerate(translated_json)]
# results = []
# for future in concurrent.futures.as_completed(futures):
# try:
# i, txt_clip, audio_segment, error = future.result()
# results.append((i, txt_clip, audio_segment))
# if error:
# error_messages.append(f"[Entry {i}] {error}")
# except Exception as e:
# err = f"❌ Unexpected error in future result: {e}"
# logger.error(err)
# error_messages.append(err)
# # Sort by entry index to ensure order
# results.sort(key=lambda x: x[0])
# text_clips = [clip for _, clip, _ in results if clip]
# if add_voiceover:
# audio_segments = [segment for _, _, segment in results if segment]
# final_video = CompositeVideoClip([video] + text_clips)
# if add_voiceover:
# if audio_segments:
# final_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
# final_video = final_video.set_audio(final_audio)
# else:
# logger.warning("⚠️ No audio segments available. Adding silent fallback.")
# silent_audio = AudioClip(lambda t: 0, duration=video.duration)
# final_video = final_video.set_audio(silent_audio)
# logger.info(f"Saving the final video to: {output_path}")
# final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
# logger.info("Video processing completed successfully.")
# # Optional: return errors
# if error_messages:
# logger.warning("⚠️ Errors encountered during processing:")
# for msg in error_messages:
# logger.warning(msg)
# return error_messages
# # Initialize TTS model only once (outside the function)
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
# def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
# try:
# full_text = " ".join(entry["translated"] for entry in translated_json if "translated" in entry and entry["translated"].strip())
# if not full_text.strip():
# msg = "❌ Translated text is empty."
# logger.error(msg)
# return None, msg, msg
# if not speaker_wav_path or not os.path.exists(speaker_wav_path):
# msg = f"❌ Speaker audio not found: {speaker_wav_path}"
# logger.error(msg)
# return None, msg, msg
# # # Truncate text based on max token assumption (~60 tokens)
# # MAX_TTS_TOKENS = 60
# # tokens = full_text.split() # crude token count
# # if len(tokens) > MAX_TTS_TOKENS:
# # logger.warning(f"⚠️ Text too long for TTS model ({len(tokens)} tokens). Truncating to {MAX_TTS_TOKENS} tokens.")
# # full_text = " ".join(tokens[:MAX_TTS_TOKENS])
# speed_tts = calibrated_speed(full_text, desired_duration)
# tts.tts_to_file(
# text=full_text,
# speaker_wav=speaker_wav_path,
# language=target_language,
# file_path=output_audio_path,
# speed=speed_tts,
# split_sentences=True
# )
# if not os.path.exists(output_audio_path):
# msg = f"❌ Voiceover file not generated at: {output_audio_path}"
# logger.error(msg)
# return None, msg, msg
# msg = "βœ… Voice cloning completed successfully."
# logger.info(msg)
# return output_audio_path, msg, None
# except Exception as e:
# err_msg = f"❌ An error occurred: {str(e)}"
# logger.error("❌ Error during voice cloning:")
# logger.error(traceback.format_exc())
# return None, err_msg, err_msg
# def calibrated_speed(text, desired_duration):
# """
# Compute a speed factor to help TTS fit audio into desired duration,
# using a simple truncated linear function of characters per second.
# """
# char_count = len(text.strip())
# if char_count == 0 or desired_duration <= 0:
# return 1.0 # fallback
# cps = char_count / desired_duration # characters per second
# # Truncated linear mapping
# if cps < 10:
# return 1.0
# elif cps > 25:
# return 1.4
# else:
# # Linearly scale between cps 10 -> 25 and speed 1.0 -> 1.3
# slope = (1.4 - 1.0) / (25 - 10)
# return 1.0 + slope * (cps - 10)
# def upload_and_manage(file, target_language, mode="transcription"):
# if file is None:
# logger.info("No file uploaded. Please upload a video/audio file.")
# return None, [], None, "No file uploaded. Please upload a video/audio file."
# try:
# start_time = time.time() # Start the timer
# logger.info(f"Started processing file: {file.name}")
# # Define paths for audio and output files
# audio_path = "audio.wav"
# output_video_path = "output_video.mp4"
# voiceover_path = "voiceover.wav"
# logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
# # Step 1: Transcribe audio from uploaded media file and get timestamps
# logger.info("Transcribing audio...")
# transcription_json, source_language = transcribe_video_with_speakers(file.name)
# logger.info(f"Transcription completed. Detected source language: {source_language}")
# # Step 2: Translate the transcription
# logger.info(f"Translating transcription from {source_language} to {target_language}...")
# translated_json = translate_text(transcription_json, source_language, target_language)
# logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
# # Step 3: Add transcript to video based on timestamps
# logger.info("Adding translated transcript to video...")
# add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
# logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
# # Convert translated JSON into a format for the editable table
# logger.info("Converting translated JSON into editable table format...")
# editable_table = [
# [float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
# for entry in translated_json
# ]
# # Calculate elapsed time
# elapsed_time = time.time() - start_time
# elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
# logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
# return translated_json, editable_table, output_video_path, elapsed_time_display
# except Exception as e:
# logger.error(f"An error occurred: {str(e)}")
# return None, [], None, f"An error occurred: {str(e)}"
# # Gradio Interface with Tabs
# def build_interface():
# with gr.Blocks(css=css) as demo:
# gr.Markdown("## Video Localization")
# with gr.Row():
# with gr.Column(scale=4):
# file_input = gr.File(label="Upload Video/Audio File")
# language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
# process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
# submit_button = gr.Button("Post and Process")
# editable_translations = gr.State(value=[])
# with gr.Column(scale=8):
# gr.Markdown("## Edit Translations")
# # Editable JSON Data
# editable_table = gr.Dataframe(
# value=[], # Default to an empty list to avoid undefined values
# headers=["start", "original", "translated", "end", "speaker"],
# datatype=["number", "str", "str", "number", "str"],
# row_count=1, # Initially empty
# col_count=5,
# interactive=[False, True, True, False, False], # Control editability
# label="Edit Translations",
# wrap=True # Enables text wrapping if supported
# )
# save_changes_button = gr.Button("Save Changes")
# processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
# elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
# with gr.Column(scale=1):
# gr.Markdown("**Feedback**")
# feedback_input = gr.Textbox(
# placeholder="Leave your feedback here...",
# label=None,
# lines=3,
# )
# feedback_btn = gr.Button("Submit Feedback")
# response_message = gr.Textbox(label=None, lines=1, interactive=False)
# db_download = gr.File(label="Download Database File", visible=False)
# # Link the feedback handling
# def feedback_submission(feedback):
# message, file_path = handle_feedback(feedback)
# if file_path:
# return message, gr.update(value=file_path, visible=True)
# return message, gr.update(visible=False)
# save_changes_button.click(
# update_translations,
# inputs=[file_input, editable_table, process_mode],
# outputs=[processed_video_output, elapsed_time_display]
# )
# submit_button.click(
# upload_and_manage,
# inputs=[file_input, language_input, process_mode],
# outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
# )
# # Connect submit button to save_feedback_db function
# feedback_btn.click(
# feedback_submission,
# inputs=[feedback_input],
# outputs=[response_message, db_download]
# )
# return demo
# # Launch the Gradio interface
# demo = build_interface()
# demo.launch()
import gradio as gr
def dummy_func(x):
return x, "Success"
with gr.Blocks() as demo:
inp = gr.Textbox()
out1 = gr.Textbox()
out2 = gr.Textbox()
btn = gr.Button("Run")
btn.click(dummy_func, inputs=inp, outputs=[out1, out2])
demo.launch()