qwen-test / app.py
qqwjq1981's picture
Update app.py
15f3f02 verified
# app.py
import gradio as gr
from transformers import AutoModelForVision2Seq, AutoProcessor
import torch
from PIL import Image
import os
# Load Qwen-VL model and processor (trust custom code)
model_id = "Qwen/Qwen-VL-Chat"
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForVision2Seq.from_pretrained(model_id, trust_remote_code=True)
model = model.to("cpu")
# Inference function
def ocr_with_qwen(image):
# Fallback to test.png if no image uploaded
if image is None:
image = Image.open("test.png")
prompt = "<|im_start|>system\nYou are a helpful assistant. Extract all text from the image and output only the text.<|im_end|>\n<|im_start|>user\n"
inputs = processor(images=image, text=prompt, return_tensors="pt").to("cpu")
outputs = model.generate(**inputs, max_new_tokens=512)
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
return result.strip()
# Gradio UI
gr.Interface(
fn=ocr_with_qwen,
inputs=gr.Image(type="pil", label="Upload Image (defaults to test.png if none uploaded)", optional=True),
outputs=gr.Textbox(label="Extracted Text"),
title="OCR with Qwen2.5-VL",
description="Upload an image to extract text using Qwen-VL model. If no image is uploaded, test.png is used.",
examples=[["test.png"]]
).launch()