Spaces:
Running
Running
from datetime import datetime | |
import json | |
import math | |
from typing import Iterator, Union, List, Dict, Any | |
import argparse | |
from io import StringIO | |
import time | |
import os | |
import pathlib | |
import tempfile | |
import zipfile | |
import numpy as np | |
import torch | |
from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode | |
from src.diarization.diarization import Diarization | |
from src.diarization.diarizationContainer import DiarizationContainer | |
from src.hooks.progressListener import ProgressListener | |
from src.hooks.subTaskProgressListener import SubTaskProgressListener | |
from src.hooks.whisperProgressHook import create_progress_listener_handle | |
from src.modelCache import ModelCache | |
from src.prompts.jsonPromptStrategy import JsonPromptStrategy | |
from src.prompts.prependPromptStrategy import PrependPromptStrategy | |
from src.source import get_audio_source_collection | |
from src.vadParallel import ParallelContext, ParallelTranscription | |
# External programs | |
import ffmpeg | |
# UI | |
import gradio as gr | |
from src.download import ExceededMaximumDuration, download_url | |
from src.utils import optional_int, slugify, str2bool, write_srt, write_srt_original, write_vtt | |
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription | |
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer | |
from src.whisper.whisperFactory import create_whisper_container | |
from src.translation.translationModel import TranslationModel | |
from src.translation.translationLangs import (TranslationLang, | |
_TO_LANG_CODE_WHISPER, sort_lang_by_whisper_codes, | |
get_lang_from_whisper_name, get_lang_from_whisper_code, get_lang_from_nllb_name, get_lang_from_m2m100_name, get_lang_from_seamlessT_Tx_name, | |
get_lang_whisper_names, get_lang_nllb_names, get_lang_m2m100_names, get_lang_seamlessT_Tx_names) | |
import re | |
import shutil | |
import zhconv | |
import tqdm | |
import traceback | |
# Configure more application defaults in config.json5 | |
# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself | |
MAX_FILE_PREFIX_LENGTH = 17 | |
# Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number) | |
MAX_AUTO_CPU_CORES = 8 | |
class VadOptions: | |
def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, | |
vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT): | |
self.vad = vad | |
self.vadMergeWindow = vadMergeWindow | |
self.vadMaxMergeSize = vadMaxMergeSize | |
self.vadPadding = vadPadding | |
self.vadPromptWindow = vadPromptWindow | |
self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \ | |
else VadInitialPromptMode.from_string(vadInitialPromptMode) | |
class WhisperTranscriber: | |
def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None, | |
vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None, | |
app_config: ApplicationConfig = None): | |
self.model_cache = ModelCache() | |
self.parallel_device_list = None | |
self.gpu_parallel_context = None | |
self.cpu_parallel_context = None | |
self.vad_process_timeout = vad_process_timeout | |
self.vad_cpu_cores = vad_cpu_cores | |
self.vad_model = None | |
self.inputAudioMaxDuration = input_audio_max_duration | |
self.deleteUploadedFiles = delete_uploaded_files | |
self.output_dir = output_dir | |
# Support for diarization | |
self.diarization: DiarizationContainer = None | |
# Dictionary with parameters to pass to diarization.run - if None, diarization is not enabled | |
self.diarization_kwargs = None | |
self.app_config = app_config | |
def set_parallel_devices(self, vad_parallel_devices: str): | |
self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None | |
def set_auto_parallel(self, auto_parallel: bool): | |
if auto_parallel: | |
if torch.cuda.is_available(): | |
self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())] | |
self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES) | |
print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.") | |
def set_diarization(self, auth_token: str, enable_daemon_process: bool = True, **kwargs): | |
if self.diarization is None: | |
self.diarization = DiarizationContainer(auth_token=auth_token, enable_daemon_process=enable_daemon_process, | |
auto_cleanup_timeout_seconds=self.app_config.diarization_process_timeout, | |
cache=self.model_cache) | |
# Set parameters | |
self.diarization_kwargs = kwargs | |
def unset_diarization(self): | |
if self.diarization is not None: | |
self.diarization.cleanup() | |
self.diarization_kwargs = None | |
# Entry function for the simple or full tab, Queue mode disabled: progress bars will not be shown | |
def transcribe_entry(self, data: dict): return self.transcribe_entry_progress(data) | |
# Entry function for the simple or full tab with progress, Progress tracking requires queuing to be enabled | |
def transcribe_entry_progress(self, data: dict, progress=gr.Progress()): | |
dataDict = {} | |
for key, value in data.items(): | |
dataDict.update({key.elem_id: value}) | |
return self.transcribe_webui(dataDict, progress=progress) | |
def transcribe_webui(self, decodeOptions: dict, progress: gr.Progress = None): | |
""" | |
Transcribe an audio file using Whisper | |
https://github.com/openai/whisper/blob/main/whisper/transcribe.py#L37 | |
Parameters | |
---------- | |
model: Whisper | |
The Whisper model instance | |
temperature: Union[float, Tuple[float, ...]] | |
Temperature for sampling. It can be a tuple of temperatures, which will be successively used | |
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`. | |
compression_ratio_threshold: float | |
If the gzip compression ratio is above this value, treat as failed | |
logprob_threshold: float | |
If the average log probability over sampled tokens is below this value, treat as failed | |
no_speech_threshold: float | |
If the no_speech probability is higher than this value AND the average log probability | |
over sampled tokens is below `logprob_threshold`, consider the segment as silent | |
condition_on_previous_text: bool | |
if True, the previous output of the model is provided as a prompt for the next window; | |
disabling may make the text inconsistent across windows, but the model becomes less prone to | |
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. | |
word_timestamps: bool | |
Extract word-level timestamps using the cross-attention pattern and dynamic time warping, | |
and include the timestamps for each word in each segment. | |
prepend_punctuations: str | |
If word_timestamps is True, merge these punctuation symbols with the next word | |
append_punctuations: str | |
If word_timestamps is True, merge these punctuation symbols with the previous word | |
initial_prompt: Optional[str] | |
Optional text to provide as a prompt for the first window. This can be used to provide, or | |
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns | |
to make it more likely to predict those word correctly. | |
decode_options: dict | |
Keyword arguments to construct `DecodingOptions` instances | |
https://github.com/openai/whisper/blob/main/whisper/decoding.py#L81 | |
task: str = "transcribe" | |
whether to perform X->X "transcribe" or X->English "translate" | |
language: Optional[str] = None | |
language that the audio is in; uses detected language if None | |
temperature: float = 0.0 | |
sample_len: Optional[int] = None # maximum number of tokens to sample | |
best_of: Optional[int] = None # number of independent sample trajectories, if t > 0 | |
beam_size: Optional[int] = None # number of beams in beam search, if t == 0 | |
patience: Optional[float] = None # patience in beam search (arxiv:2204.05424) | |
sampling-related options | |
length_penalty: Optional[float] = None | |
"alpha" in Google NMT, or None for length norm, when ranking generations | |
to select which to return among the beams or best-of-N samples | |
prompt: Optional[Union[str, List[int]]] = None # for the previous context | |
prefix: Optional[Union[str, List[int]]] = None # to prefix the current context | |
text or tokens to feed as the prompt or the prefix; for more info: | |
https://github.com/openai/whisper/discussions/117#discussioncomment-3727051 | |
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1" | |
suppress_blank: bool = True # this will suppress blank outputs | |
list of tokens ids (or comma-separated token ids) to suppress | |
"-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()` | |
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only | |
max_initial_timestamp: Optional[float] = 1.0 | |
timestamp sampling options | |
fp16: bool = True # use fp16 for most of the calculation | |
implementation details | |
repetition_penalty: float | |
The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0. | |
no_repeat_ngram_size: int | |
The model ensures that a sequence of words of no_repeat_ngram_size isn’t repeated in the output sequence. If specified, it must be a positive integer greater than 1. | |
""" | |
try: | |
whisperModelName: str = decodeOptions.pop("whisperModelName") | |
whisperLangName: str = decodeOptions.pop("whisperLangName") | |
sourceInput: str = decodeOptions.pop("sourceInput") | |
urlData: str = decodeOptions.pop("urlData") | |
multipleFiles: List = decodeOptions.pop("multipleFiles") | |
microphoneData: str = decodeOptions.pop("microphoneData") | |
task: str = decodeOptions.pop("task") | |
vad: str = decodeOptions.pop("vad") | |
vadMergeWindow: float = decodeOptions.pop("vadMergeWindow") | |
vadMaxMergeSize: float = decodeOptions.pop("vadMaxMergeSize") | |
vadPadding: float = decodeOptions.pop("vadPadding", self.app_config.vad_padding) | |
vadPromptWindow: float = decodeOptions.pop("vadPromptWindow", self.app_config.vad_prompt_window) | |
vadInitialPromptMode: str = decodeOptions.pop("vadInitialPromptMode", self.app_config.vad_initial_prompt_mode) | |
self.vad_process_timeout: float = decodeOptions.pop("vadPocessTimeout", self.vad_process_timeout) | |
self.whisperSegmentsFilters: List[List] = [] | |
inputFilter: bool = decodeOptions.pop("whisperSegmentsFilter", None) | |
inputFilters = [] | |
for idx in range(1,len(self.app_config.whisper_segments_filters) + 1,1): | |
inputFilters.append(decodeOptions.pop(f"whisperSegmentsFilter{idx}", None)) | |
inputFilters = filter(None, inputFilters) | |
if inputFilter: | |
for inputFilter in inputFilters: | |
self.whisperSegmentsFilters.append([]) | |
self.whisperSegmentsFilters[-1].append(inputFilter) | |
for text in inputFilter.split(","): | |
result = [] | |
subFilter = [text] if "||" not in text else [strFilter_ for strFilter_ in text.lstrip("(").rstrip(")").split("||") if strFilter_] | |
for string in subFilter: | |
conditions = [condition for condition in string.split(" ") if condition] | |
if len(conditions) == 1 and conditions[0] == "segment_last": | |
pass | |
elif len(conditions) == 3: | |
conditions[-1] = float(conditions[-1]) | |
else: | |
continue | |
result.append(conditions) | |
self.whisperSegmentsFilters[-1].append(result) | |
diarization: bool = decodeOptions.pop("diarization", False) | |
diarization_speakers: int = decodeOptions.pop("diarization_speakers", 2) | |
diarization_min_speakers: int = decodeOptions.pop("diarization_min_speakers", 1) | |
diarization_max_speakers: int = decodeOptions.pop("diarization_max_speakers", 8) | |
highlight_words: bool = decodeOptions.pop("highlight_words", False) | |
temperature: float = decodeOptions.pop("temperature", None) | |
temperature_increment_on_fallback: float = decodeOptions.pop("temperature_increment_on_fallback", None) | |
whisperRepetitionPenalty: float = decodeOptions.get("repetition_penalty", None) | |
whisperNoRepeatNgramSize: int = decodeOptions.get("no_repeat_ngram_size", None) | |
if whisperRepetitionPenalty is not None and whisperRepetitionPenalty <= 1.0: | |
decodeOptions.pop("repetition_penalty") | |
if whisperNoRepeatNgramSize is not None and whisperNoRepeatNgramSize <= 1: | |
decodeOptions.pop("no_repeat_ngram_size") | |
for key, value in list(decodeOptions.items()): | |
if value == "": | |
del decodeOptions[key] | |
# word_timestamps = decodeOptions.get("word_timestamps", False) | |
# condition_on_previous_text = decodeOptions.get("condition_on_previous_text", False) | |
# prepend_punctuations = decodeOptions.get("prepend_punctuations", None) | |
# append_punctuations = decodeOptions.get("append_punctuations", None) | |
# initial_prompt = decodeOptions.get("initial_prompt", None) | |
# best_of = decodeOptions.get("best_of", None) | |
# beam_size = decodeOptions.get("beam_size", None) | |
# patience = decodeOptions.get("patience", None) | |
# length_penalty = decodeOptions.get("length_penalty", None) | |
# suppress_tokens = decodeOptions.get("suppress_tokens", None) | |
# compression_ratio_threshold = decodeOptions.get("compression_ratio_threshold", None) | |
# logprob_threshold = decodeOptions.get("logprob_threshold", None) | |
vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode) | |
if diarization: | |
if diarization_speakers is not None and diarization_speakers < 1: | |
self.set_diarization(auth_token=self.app_config.auth_token, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) | |
else: | |
self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers) | |
else: | |
self.unset_diarization() | |
# Handle temperature_increment_on_fallback | |
if temperature is not None: | |
if temperature_increment_on_fallback is not None: | |
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)) | |
else: | |
temperature = [temperature] | |
decodeOptions["temperature"] = temperature | |
progress(0, desc="init audio sources") | |
if sourceInput == "urlData": | |
sources = self.__get_source(urlData, None, None) | |
elif sourceInput == "multipleFiles": | |
sources = self.__get_source(None, multipleFiles, None) | |
elif sourceInput == "microphoneData": | |
sources = self.__get_source(None, None, microphoneData) | |
if (len(sources) == 0): | |
raise Exception("init audio sources failed...") | |
try: | |
progress(0, desc="init whisper model") | |
whisperLang: TranslationLang = get_lang_from_whisper_name(whisperLangName) | |
whisperLangCode = whisperLang.whisper.code if whisperLang is not None and whisperLang.whisper is not None else None | |
selectedModel = whisperModelName if whisperModelName is not None else "base" | |
model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation, | |
model_name=selectedModel, compute_type=self.app_config.compute_type, | |
cache=self.model_cache, models=self.app_config.models["whisper"]) | |
progress(0, desc="init translate model") | |
translationLang, translationModel = self.initTranslationModel(whisperLangName, whisperLang, decodeOptions) | |
progress(0, desc="init transcribe") | |
# Result | |
download = [] | |
zip_file_lookup = {} | |
text = "" | |
vtt = "" | |
filterLogs = "" | |
# Write result | |
downloadDirectory = tempfile.mkdtemp() | |
source_index = 0 | |
extra_tasks_count = 1 if translationLang is not None else 0 | |
outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory | |
# Progress | |
total_duration = sum([source.get_audio_duration() for source in sources]) | |
current_progress = 0 | |
# A listener that will report progress to Gradio | |
root_progress_listener = self._create_progress_listener(progress) | |
sub_task_total = 1/(len(sources)+extra_tasks_count*len(sources)) | |
# Execute whisper | |
for idx, source in enumerate(sources): | |
source_prefix = "" | |
source_audio_duration = source.get_audio_duration() | |
if (len(sources) > 1): | |
# Prefix (minimum 2 digits) | |
source_index += 1 | |
source_prefix = str(source_index).zfill(2) + "_" | |
print("Transcribing ", source.source_path) | |
scaled_progress_listener = SubTaskProgressListener(root_progress_listener, | |
base_task_total=1, | |
sub_task_start=idx*1/len(sources), | |
sub_task_total=sub_task_total) | |
# Transcribe | |
result = self.transcribe_file(model, source.source_path, whisperLangCode, task, vadOptions, scaled_progress_listener, **decodeOptions) | |
filterLog = result.get("filterLog", None) | |
if filterLog: | |
filterLogs += source.get_full_name() + ":\n" + filterLog + "\n\n" | |
if translationModel is not None and whisperLang is None and result["language"] is not None and len(result["language"]) > 0: | |
whisperLang = get_lang_from_whisper_code(result["language"]) | |
translationModel.whisperLang = whisperLang | |
short_name, suffix = source.get_short_name_suffix(max_length=self.app_config.input_max_file_name_length) | |
filePrefix = slugify(source_prefix + short_name, allow_unicode=True) | |
# Update progress | |
current_progress += source_audio_duration | |
source_download, source_text, source_vtt = self.write_result(result, whisperLang, translationModel, filePrefix + suffix.replace(".", "_"), outputDirectory, highlight_words, scaled_progress_listener) | |
if self.app_config.merge_subtitle_with_sources and self.app_config.output_dir is not None: | |
print("\nmerge subtitle(srt) with source file [" + source.source_name + "]\n") | |
outRsult = "" | |
try: | |
srt_path = source_download[0] | |
save_path = os.path.join(self.app_config.output_dir, filePrefix) | |
# save_without_ext, ext = os.path.splitext(save_path) | |
source_lang = "." + whisperLang.whisper.code if whisperLang is not None and whisperLang.whisper is not None else "" | |
translate_lang = "." + translationLang.nllb.code if translationLang is not None else "" | |
output_with_srt = save_path + source_lang + translate_lang + suffix | |
#ffmpeg -i "input.mp4" -i "input.srt" -c copy -c:s mov_text output.mp4 | |
input_file = ffmpeg.input(source.source_path) | |
input_srt = ffmpeg.input(srt_path) | |
out = ffmpeg.output(input_file, input_srt, output_with_srt, vcodec='copy', acodec='copy', scodec='mov_text') | |
outRsult = out.run(overwrite_output=True) | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error merge subtitle with source file: \n" + source.source_path + ", \n" + str(e), outRsult) | |
elif self.app_config.save_downloaded_files and self.app_config.output_dir is not None and urlData: | |
print("Saving downloaded file [" + source.source_name + "]") | |
try: | |
save_path = os.path.join(self.app_config.output_dir, filePrefix) | |
shutil.copy(source.source_path, save_path + suffix) | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error saving downloaded file: \n" + source.source_path + ", \n" + str(e)) | |
if len(sources) > 1: | |
# Add new line separators | |
if (len(source_text) > 0): | |
source_text += os.linesep + os.linesep | |
if (len(source_vtt) > 0): | |
source_vtt += os.linesep + os.linesep | |
# Append file name to source text too | |
source_text = source.get_full_name() + ":" + os.linesep + source_text | |
source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt | |
# Add to result | |
download.extend(source_download) | |
text += source_text | |
vtt += source_vtt | |
if (len(sources) > 1): | |
# Zip files support at least 260 characters, but we'll play it safe and use 200 | |
zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True) | |
# File names in ZIP file can be longer | |
for source_download_file in source_download: | |
# Get file postfix (after last -) | |
filePostfix = os.path.basename(source_download_file).split("-")[-1] | |
zip_file_name = zipFilePrefix + "-" + filePostfix | |
zip_file_lookup[source_download_file] = zip_file_name | |
# Create zip file from all sources | |
if len(sources) > 1: | |
downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip") | |
with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip: | |
for download_file in download: | |
# Get file name from lookup | |
zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file)) | |
zip.write(download_file, arcname=zip_file_name) | |
download.insert(0, downloadAllPath) | |
filterLogText = [gr.Text.update(visible=False)] | |
if filterLogs: | |
filterLogText = [gr.Text.update(visible=True, value=filterLogs)] | |
return [download, text, vtt] + filterLogText | |
finally: | |
# Cleanup source | |
if self.deleteUploadedFiles: | |
for source in sources: | |
print("Deleting temporary source file: " + source.source_path) | |
try: | |
os.remove(source.source_path) | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error deleting temporary source file: \n" + source.source_path + ", \n" + str(e)) | |
except ExceededMaximumDuration as e: | |
return [], "[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s", "[ERROR]", "" | |
except Exception as e: | |
print(traceback.format_exc()) | |
return [], "Error occurred during transcribe: " + str(e), traceback.format_exc(), "" | |
def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, languageCode: str, task: str = None, | |
vadOptions: VadOptions = VadOptions(), | |
progressListener: ProgressListener = None, **decodeOptions: dict): | |
initial_prompt = decodeOptions.pop('initial_prompt', None) | |
if progressListener is None: | |
# Default progress listener | |
progressListener = ProgressListener() | |
if ('task' in decodeOptions): | |
task = decodeOptions.pop('task') | |
initial_prompt_mode = vadOptions.vadInitialPromptMode | |
# Set default initial prompt mode | |
if (initial_prompt_mode is None): | |
initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT | |
if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or | |
initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT): | |
# Prepend initial prompt | |
prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode) | |
elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE): | |
# Use a JSON format to specify the prompt for each segment | |
prompt_strategy = JsonPromptStrategy(initial_prompt) | |
else: | |
raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode) | |
# Callable for processing an audio file | |
whisperCallable = model.create_callback(languageCode, task, prompt_strategy=prompt_strategy, **decodeOptions) | |
# The results | |
if (vadOptions.vad == 'silero-vad'): | |
# Silero VAD where non-speech gaps are transcribed | |
process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions) | |
result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener) | |
elif (vadOptions.vad == 'silero-vad-skip-gaps'): | |
# Silero VAD where non-speech gaps are simply ignored | |
skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions) | |
result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener) | |
elif (vadOptions.vad == 'silero-vad-expand-into-gaps'): | |
# Use Silero VAD where speech-segments are expanded into non-speech gaps | |
expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions) | |
result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener) | |
elif (vadOptions.vad == 'periodic-vad'): | |
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but | |
# it may create a break in the middle of a sentence, causing some artifacts. | |
periodic_vad = VadPeriodicTranscription() | |
period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow) | |
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) | |
else: | |
if (self._has_parallel_devices()): | |
# Use a simple period transcription instead, as we need to use the parallel context | |
periodic_vad = VadPeriodicTranscription() | |
period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1) | |
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener) | |
else: | |
# Default VAD | |
result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener) | |
if self.whisperSegmentsFilters: | |
querySegmentsResult, filterLog = self.filterSegments(result["segments"]) | |
result["segments"] = querySegmentsResult | |
if filterLog: | |
result["filterLog"] = filterLog | |
# Diarization | |
if self.diarization and self.diarization_kwargs: | |
print("Diarizing ", audio_path) | |
diarization_result = list(self.diarization.run(audio_path, **self.diarization_kwargs)) | |
# Print result | |
print("Diarization result: ") | |
for entry in diarization_result: | |
print(f" start={entry.start:.1f}s stop={entry.end:.1f}s speaker_{entry.speaker}") | |
# Add speakers to result | |
result = self.diarization.mark_speakers(diarization_result, result) | |
return result | |
def filterSegments(self, querySegments: List[Dict[str, Any]]): | |
try: | |
if not self.whisperSegmentsFilters: return | |
filterIdx = 0 | |
filterLog = [] | |
querySegmentsResult = querySegments.copy() | |
for idx in range(len(querySegmentsResult),0,-1): | |
currentID = idx - 1 | |
querySegment = querySegmentsResult[currentID] | |
for segmentsFilter in self.whisperSegmentsFilters: | |
isFilter: bool = True | |
for idx, strFilter in enumerate(segmentsFilter): | |
if not isFilter: break | |
if idx == 0: | |
filterCondition = strFilter | |
continue | |
isFilter = True | |
for subFilter in strFilter: | |
key: str = subFilter[0] | |
if key == "segment_last": | |
isFilter = querySegment.get(key, None) | |
if isFilter: break | |
continue | |
sign: str = subFilter[1] | |
threshold: float = subFilter[2] | |
if key == "durationLen": | |
value = querySegment["end"] - querySegment["start"] | |
elif key == "textLen": | |
value = len(querySegment["text"]) | |
else: | |
value = querySegment[key] | |
if sign == "=" or sign == "==": | |
isFilter = value == threshold | |
elif sign == ">": | |
isFilter = value > threshold | |
elif sign == ">=": | |
isFilter = value >= threshold | |
elif sign == "<": | |
isFilter = value < threshold | |
elif sign == "<=": | |
isFilter = value <= threshold | |
else: isFilter = False | |
if isFilter: break | |
if isFilter: break | |
if isFilter: | |
filterLog.append(f"\t{querySegment}\n") | |
del querySegmentsResult[currentID] | |
if filterLog: | |
filterLog = [f"filter{idx:03d} [{filterCondition}]:\n{log}" for idx, log in enumerate(reversed(filterLog))] | |
return querySegmentsResult, "\n".join(filterLog) | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error filter segments: " + str(e)) | |
def _create_progress_listener(self, progress: gr.Progress): | |
if (progress is None): | |
# Dummy progress listener | |
return ProgressListener() | |
class ForwardingProgressListener(ProgressListener): | |
def __init__(self, progress: gr.Progress): | |
self.progress = progress | |
def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None): | |
# From 0 to 1 | |
self.progress(current / total, desc=desc) | |
def on_finished(self, desc: str = None): | |
self.progress(1, desc=desc) | |
return ForwardingProgressListener(progress) | |
def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig, | |
progressListener: ProgressListener = None): | |
if (not self._has_parallel_devices()): | |
# No parallel devices, so just run the VAD and Whisper in sequence | |
return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener) | |
gpu_devices = self.parallel_device_list | |
if (gpu_devices is None or len(gpu_devices) == 0): | |
# No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL. | |
gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)] | |
# Create parallel context if needed | |
if (self.gpu_parallel_context is None): | |
# Create a context wih processes and automatically clear the pool after 1 hour of inactivity | |
self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout) | |
# We also need a CPU context for the VAD | |
if (self.cpu_parallel_context is None): | |
self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout) | |
parallel_vad = ParallelTranscription() | |
return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable, | |
config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, | |
cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context, | |
progress_listener=progressListener) | |
def _has_parallel_devices(self): | |
return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1 | |
def _concat_prompt(self, prompt1, prompt2): | |
if (prompt1 is None): | |
return prompt2 | |
elif (prompt2 is None): | |
return prompt1 | |
else: | |
return prompt1 + " " + prompt2 | |
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions): | |
# Use Silero VAD | |
if (self.vad_model is None): | |
self.vad_model = VadSileroTranscription() #vad_model is snakers4/silero-vad | |
config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, | |
max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize, | |
segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding, | |
max_prompt_window=vadOptions.vadPromptWindow) | |
return config | |
def write_result(self, result: dict, whisperLang: TranslationLang, translationModel: TranslationModel, source_name: str, output_dir: str, highlight_words: bool = False, progressListener: ProgressListener = None): | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
text = result["text"] | |
segments = result["segments"] | |
language = result["language"] | |
languageMaxLineWidth = 80 #Use east_asian_width to automatically determine the Character Width of the string, replacing the __get_max_line_width function. 80 latin characters should fit on a 1080p/720p screen | |
if translationModel is not None and translationModel.translationLang is not None: | |
try: | |
segments_progress_listener = SubTaskProgressListener(progressListener, | |
base_task_total=progressListener.sub_task_total, | |
sub_task_start=1, | |
sub_task_total=1) | |
pbar = tqdm.tqdm(total=len(segments)) | |
perf_start_time = time.perf_counter() | |
translationModel.load_model() | |
for idx, segment in enumerate(segments): | |
seg_text = segment["text"] | |
segment["original"] = seg_text | |
segment["text"] = translationModel.translation(seg_text) | |
pbar.update(1) | |
segments_progress_listener.on_progress(idx+1, len(segments), desc=f"Process segments: {idx}/{len(segments)}") | |
translationModel.release_vram() | |
perf_end_time = time.perf_counter() | |
# Call the finished callback | |
if segments_progress_listener is not None: | |
segments_progress_listener.on_finished(desc=f"Process segments: {idx}/{len(segments)}") | |
print("\n\nprocess segments took {} seconds.\n\n".format(perf_end_time - perf_start_time)) | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error process segments: " + str(e)) | |
print("Max line Character Width " + str(languageMaxLineWidth) + " for language:" + language) | |
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words) | |
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words) | |
json_result = json.dumps(result, indent=4, ensure_ascii=False) | |
srt_original = None | |
srt_bilingual = None | |
if translationModel is not None and translationModel.translationLang is not None: | |
srt_original = self.__get_subs(result["segments"], "srt_original", languageMaxLineWidth, highlight_words=highlight_words) | |
srt_bilingual = self.__get_subs(result["segments"], "srt_bilingual", languageMaxLineWidth, highlight_words=highlight_words) | |
whisperLangZho: bool = whisperLang is not None and whisperLang.nllb is not None and whisperLang.nllb.code in ["zho_Hant", "zho_Hans", "yue_Hant"] | |
translationZho: bool = translationModel is not None and translationModel.translationLang is not None and translationModel.translationLang.nllb is not None and translationModel.translationLang.nllb.code in ["zho_Hant", "zho_Hans", "yue_Hant"] | |
if whisperLangZho or translationZho: | |
locale = None | |
if whisperLangZho: | |
if whisperLang.nllb.code == "zho_Hant": | |
locale = "zh-tw" | |
elif whisperLang.nllb.code == "zho_Hans": | |
locale = "zh-cn" | |
elif whisperLang.nllb.code == "yue_Hant": | |
locale = "zh-hk" | |
if translationZho: | |
if translationModel.translationLang.nllb.code == "zho_Hant": | |
locale = "zh-tw" | |
elif translationModel.translationLang.nllb.code == "zho_Hans": | |
locale = "zh-cn" | |
elif translationModel.translationLang.nllb.code == "yue_Hant": | |
locale = "zh-hk" | |
if locale is not None: | |
vtt = zhconv.convert(vtt, locale) | |
srt = zhconv.convert(srt, locale) | |
text = zhconv.convert(text, locale) | |
json_result = zhconv.convert(json_result, locale) | |
if translationModel is not None and translationModel.translationLang is not None: | |
if srt_original is not None and len(srt_original) > 0: | |
srt_original = zhconv.convert(srt_original, locale) | |
if srt_bilingual is not None and len(srt_bilingual) > 0: | |
srt_bilingual = zhconv.convert(srt_bilingual, locale) | |
output_files = [] | |
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt")); | |
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt")); | |
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt")); | |
output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json")); | |
if srt_original is not None and len(srt_original) > 0: | |
output_files.append(self.__create_file(srt_original, output_dir, source_name + "-original.srt")); | |
if srt_bilingual is not None and len(srt_bilingual) > 0: | |
output_files.append(self.__create_file(srt_bilingual, output_dir, source_name + "-bilingual.srt")); | |
return output_files, text, srt_bilingual if srt_bilingual is not None and len(srt_bilingual) > 0 else vtt | |
def clear_cache(self): | |
self.model_cache.clear() | |
self.vad_model = None | |
def __get_source(self, urlData, multipleFiles, microphoneData): | |
return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration) | |
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str: | |
segmentStream = StringIO() | |
if format == 'vtt': | |
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) | |
elif format == 'srt': | |
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) | |
elif format == 'srt_original': | |
write_srt_original(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words) | |
elif format == 'srt_bilingual': | |
write_srt_original(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words, bilingual=True) | |
else: | |
raise Exception("Unknown format " + format) | |
segmentStream.seek(0) | |
return segmentStream.read() | |
def __create_file(self, text: str, directory: str, fileName: str) -> str: | |
# Write the text to a file | |
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file: | |
file.write(text) | |
return file.name | |
def close(self): | |
print("Closing parallel contexts") | |
self.clear_cache() | |
if (self.gpu_parallel_context is not None): | |
self.gpu_parallel_context.close() | |
if (self.cpu_parallel_context is not None): | |
self.cpu_parallel_context.close() | |
# Cleanup diarization | |
if (self.diarization is not None): | |
self.diarization.cleanup() | |
self.diarization = None | |
# Entry function for the simple or full tab, Queue mode disabled: progress bars will not be shown | |
def translation_entry(self, data: dict): return self.translation_entry_progress(data) | |
# Entry function for the simple or full tab with progress, Progress tracking requires queuing to be enabled | |
def translation_entry_progress(self, data: dict, progress=gr.Progress()): | |
dataDict = {} | |
for key, value in data.items(): | |
dataDict.update({key.elem_id: value}) | |
return self.translation_webui(dataDict, progress=progress) | |
def translation_webui(self, dataDict: dict, progress: gr.Progress = None): | |
try: | |
inputText: str = dataDict.pop("inputText") | |
inputLangName: str = dataDict.pop("inputLangName") | |
inputLang: TranslationLang = get_lang_from_whisper_name(inputLangName) | |
progress(0, desc="init translate model") | |
translationLang, translationModel = self.initTranslationModel(inputLangName, inputLang, dataDict) | |
translationEnbaleBilingual: bool = dataDict.pop("translationEnbaleBilingual") | |
translationDetectLineBreaks: bool = dataDict.pop("translationDetectLineBreaks") | |
result = [] | |
if translationModel and translationModel.translationLang: | |
try: | |
inputTexts = inputText.split("\n") | |
progress(0, desc="Translation starting...") | |
perf_start_time = time.perf_counter() | |
translationModel.load_model() | |
def doTranslation(text: str): | |
if translationEnbaleBilingual: | |
result.append(text) | |
result.append(translationModel.translation(text)) | |
temporaryText = "" | |
for idx, text in enumerate(tqdm.tqdm(inputTexts)): | |
if not text or re.match("""^[\u2000-\u206F\u2E00-\u2E7F\\'!"#$%&()*+,\-.\/:;<=>?@\[\]^_`{|}~\d ]+$""", text.strip()): | |
if temporaryText: | |
doTranslation(temporaryText) | |
temporaryText = "" | |
result.append(text) | |
else: | |
if translationDetectLineBreaks and ((not text.rstrip().endswith(".") and not text.rstrip().endswith("。")) or temporaryText): | |
if temporaryText: | |
temporaryText = temporaryText.rstrip() + " " | |
temporaryText += text | |
continue | |
doTranslation(text) | |
progress((idx+1)/len(inputTexts), desc=f"Process inputText: {idx+1}/{len(inputTexts)}") | |
if temporaryText: | |
doTranslation(temporaryText) | |
translationModel.release_vram() | |
perf_end_time = time.perf_counter() | |
# Call the finished callback | |
progress(1, desc=f"Process inputText: {idx+1}/{len(inputTexts)}") | |
print("\n\nprocess inputText took {} seconds.\n\n".format(perf_end_time - perf_start_time)) | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error process inputText: " + str(e)) | |
resultStr = "\n".join(result) | |
translationZho: bool = translationModel and translationModel.translationLang and translationModel.translationLang.nllb and translationModel.translationLang.nllb.code in ["zho_Hant", "zho_Hans", "yue_Hant"] | |
if translationZho: | |
if translationModel.translationLang.nllb.code == "zho_Hant": | |
locale = "zh-tw" | |
elif translationModel.translationLang.nllb.code == "zho_Hans": | |
locale = "zh-cn" | |
elif translationModel.translationLang.nllb.code == "yue_Hant": | |
locale = "zh-hk" | |
resultStr = zhconv.convert(resultStr, locale) | |
return resultStr | |
except Exception as e: | |
print(traceback.format_exc()) | |
return "Error occurred during transcribe: " + str(e) + "\n\n" + traceback.format_exc() | |
def initTranslationModel(self, inputLangName: str, inputLang: TranslationLang, dataDict: dict): | |
translateInput: str = dataDict.pop("translateInput") | |
m2m100ModelName: str = dataDict.pop("m2m100ModelName") | |
m2m100LangName: str = dataDict.pop("m2m100LangName") | |
nllbModelName: str = dataDict.pop("nllbModelName") | |
nllbLangName: str = dataDict.pop("nllbLangName") | |
mt5ModelName: str = dataDict.pop("mt5ModelName") | |
mt5LangName: str = dataDict.pop("mt5LangName") | |
ALMAModelName: str = dataDict.pop("ALMAModelName") | |
ALMALangName: str = dataDict.pop("ALMALangName") | |
madlad400ModelName: str = dataDict.pop("madlad400ModelName") | |
madlad400LangName: str = dataDict.pop("madlad400LangName") | |
seamlessModelName: str = dataDict.pop("seamlessModelName") | |
seamlessLangName: str = dataDict.pop("seamlessLangName") | |
LlamaModelName: str = dataDict.pop("LlamaModelName") | |
LlamaLangName: str = dataDict.pop("LlamaLangName") | |
translationBatchSize: int = dataDict.pop("translationBatchSize") | |
translationNoRepeatNgramSize: int = dataDict.pop("translationNoRepeatNgramSize") | |
translationNumBeams: int = dataDict.pop("translationNumBeams") | |
translationTorchDtypeFloat16: bool = dataDict.pop("translationTorchDtypeFloat16") | |
translationUsingBitsandbytes: str = dataDict.pop("translationUsingBitsandbytes") | |
translationLang = None | |
translationModel = None | |
if translateInput == "m2m100" and m2m100LangName is not None and len(m2m100LangName) > 0: | |
selectedModelName = m2m100ModelName if m2m100ModelName is not None and len(m2m100ModelName) > 0 else "m2m100_418M/facebook" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["m2m100"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_m2m100_name(m2m100LangName) | |
elif translateInput == "nllb" and nllbLangName is not None and len(nllbLangName) > 0: | |
selectedModelName = nllbModelName if nllbModelName is not None and len(nllbModelName) > 0 else "nllb-200-distilled-600M/facebook" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["nllb"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_nllb_name(nllbLangName) | |
elif translateInput == "mt5" and mt5LangName is not None and len(mt5LangName) > 0: | |
selectedModelName = mt5ModelName if mt5ModelName is not None and len(mt5ModelName) > 0 else "mt5-zh-ja-en-trimmed/K024" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["mt5"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_m2m100_name(mt5LangName) | |
elif translateInput == "ALMA" and ALMALangName is not None and len(ALMALangName) > 0: | |
selectedModelName = ALMAModelName if ALMAModelName is not None and len(ALMAModelName) > 0 else "ALMA-7B-ct2:int8_float16/avan" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["ALMA"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_m2m100_name(ALMALangName) | |
elif translateInput == "madlad400" and madlad400LangName is not None and len(madlad400LangName) > 0: | |
selectedModelName = madlad400ModelName if madlad400ModelName is not None and len(madlad400ModelName) > 0 else "madlad400-3b-mt-ct2-int8_float16/SoybeanMilk" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["madlad400"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_m2m100_name(madlad400LangName) | |
elif translateInput == "seamless" and seamlessLangName is not None and len(seamlessLangName) > 0: | |
selectedModelName = seamlessModelName if seamlessModelName is not None and len(seamlessModelName) > 0 else "seamless-m4t-v2-large/facebook" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["seamless"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_seamlessT_Tx_name(seamlessLangName) | |
elif translateInput == "Llama" and LlamaLangName is not None and len(LlamaLangName) > 0: | |
selectedModelName = LlamaModelName if LlamaModelName is not None and len(LlamaModelName) > 0 else "Meta-Llama-3-8B-Instruct-ct2-int8_float16/avan" | |
selectedModel = next((modelConfig for modelConfig in self.app_config.models["Llama"] if modelConfig.name == selectedModelName), None) | |
translationLang = get_lang_from_m2m100_name(LlamaLangName) | |
if translationLang is not None: | |
translationModel = TranslationModel(modelConfig=selectedModel, whisperLang=inputLang, translationLang=translationLang, batchSize=translationBatchSize, noRepeatNgramSize=translationNoRepeatNgramSize, numBeams=translationNumBeams, torchDtypeFloat16=translationTorchDtypeFloat16, usingBitsandbytes=translationUsingBitsandbytes) | |
return translationLang, translationModel | |
def create_ui(app_config: ApplicationConfig): | |
translateModelMd: str = None | |
optionsMd: str = None | |
readmeMd: str = None | |
try: | |
translateModelPath = pathlib.Path("docs/translateModel.md") | |
with open(translateModelPath, "r", encoding="utf-8") as translateModelFile: | |
translateModelMd = translateModelFile.read() | |
except Exception as e: | |
print("Error occurred during read translateModel.md file: ", str(e)) | |
try: | |
optionsPath = pathlib.Path("docs/options.md") | |
with open(optionsPath, "r", encoding="utf-8") as optionsFile: | |
optionsMd = optionsFile.read() | |
except Exception as e: | |
print("Error occurred during read options.md file: ", str(e)) | |
try: | |
with open("README.md", "r", encoding="utf-8") as readmeFile: | |
readmeMd = readmeFile.read() | |
except Exception as e: | |
print("Error occurred during read options.md file: ", str(e)) | |
ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores, | |
app_config.delete_uploaded_files, app_config.output_dir, app_config) | |
# Specify a list of devices to use for parallel processing | |
ui.set_parallel_devices(app_config.vad_parallel_devices) | |
ui.set_auto_parallel(app_config.auto_parallel) | |
is_whisper = False | |
if app_config.whisper_implementation == "whisper": | |
implementation_name = "Whisper" | |
is_whisper = True | |
elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]: | |
implementation_name = "Faster Whisper" | |
else: | |
# Try to convert from camel-case to title-case | |
implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ") | |
uiDescription = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse " | |
uiDescription += " audio and is also a multi-task model that can perform multilingual speech recognition " | |
uiDescription += " as well as speech translation and language identification. " | |
uiDescription += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option." | |
# Recommend faster-whisper | |
if is_whisper: | |
uiDescription += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)." | |
if app_config.input_audio_max_duration > 0: | |
uiDescription += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s" | |
uiArticle = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)." | |
whisper_models = app_config.get_model_names("whisper") | |
nllb_models = app_config.get_model_names("nllb") | |
m2m100_models = app_config.get_model_names("m2m100") | |
mt5_models = app_config.get_model_names("mt5") | |
ALMA_models = app_config.get_model_names("ALMA") | |
madlad400_models = app_config.get_model_names("madlad400") | |
seamless_models = app_config.get_model_names("seamless") | |
Llama_models = app_config.get_model_names("Llama") | |
if not torch.cuda.is_available(): # Loading only quantized or models with medium-low parameters in an environment without GPU support. | |
nllb_models = list(filter(lambda nllb: any(name in nllb for name in ["-600M", "-1.3B", "-3.3B-ct2"]), nllb_models)) | |
m2m100_models = list(filter(lambda m2m100: "12B" not in m2m100, m2m100_models)) | |
ALMA_models = list(filter(lambda alma: "GGUF" in alma or "ct2" in alma, ALMA_models)) | |
madlad400_models = list(filter(lambda madlad400: "ct2" in madlad400, madlad400_models)) | |
common_whisper_inputs = lambda : { | |
gr.Dropdown(label="Whisper - Model (for audio)", choices=whisper_models, value=app_config.default_model_name, elem_id="whisperModelName"), | |
gr.Dropdown(label="Whisper - Language", choices=sorted(get_lang_whisper_names()), value=app_config.language, elem_id="whisperLangName"), | |
} | |
common_m2m100_inputs = lambda : { | |
gr.Dropdown(label="M2M100 - Model (for translate)", choices=m2m100_models, elem_id="m2m100ModelName"), | |
gr.Dropdown(label="M2M100 - Language", choices=sorted(get_lang_m2m100_names()), elem_id="m2m100LangName"), | |
} | |
common_nllb_inputs = lambda : { | |
gr.Dropdown(label="NLLB - Model (for translate)", choices=nllb_models, elem_id="nllbModelName"), | |
gr.Dropdown(label="NLLB - Language", choices=sorted(get_lang_nllb_names()), elem_id="nllbLangName"), | |
} | |
common_mt5_inputs = lambda : { | |
gr.Dropdown(label="MT5 - Model (for translate)", choices=mt5_models, elem_id="mt5ModelName"), | |
gr.Dropdown(label="MT5 - Language", choices=sorted(get_lang_m2m100_names(["en", "ja", "zh"])), elem_id="mt5LangName"), | |
} | |
common_ALMA_inputs = lambda : { | |
gr.Dropdown(label="ALMA - Model (for translate)", choices=ALMA_models, elem_id="ALMAModelName"), | |
gr.Dropdown(label="ALMA - Language", choices=sort_lang_by_whisper_codes(["en", "de", "cs", "is", "ru", "zh", "ja"]), elem_id="ALMALangName"), | |
} | |
common_madlad400_inputs = lambda : { | |
gr.Dropdown(label="madlad400 - Model (for translate)", choices=madlad400_models, elem_id="madlad400ModelName"), | |
gr.Dropdown(label="madlad400 - Language", choices=sorted(get_lang_m2m100_names()), elem_id="madlad400LangName"), | |
} | |
common_seamless_inputs = lambda : { | |
gr.Dropdown(label="seamless - Model (for translate)", choices=seamless_models, elem_id="seamlessModelName"), | |
gr.Dropdown(label="seamless - Language", choices=sorted(get_lang_seamlessT_Tx_names()), elem_id="seamlessLangName"), | |
} | |
common_Llama_inputs = lambda : { | |
gr.Dropdown(label="Llama - Model (for translate)", choices=Llama_models, elem_id="LlamaModelName"), | |
gr.Dropdown(label="Llama - Language", choices=sorted(get_lang_m2m100_names()), elem_id="LlamaLangName"), | |
} | |
common_translation_inputs = lambda : { | |
gr.Number(label="Translation - Batch Size", precision=0, value=app_config.translation_batch_size, elem_id="translationBatchSize"), | |
gr.Number(label="Translation - No Repeat Ngram Size", precision=0, value=app_config.translation_no_repeat_ngram_size, elem_id="translationNoRepeatNgramSize", info="Prevent repetitions of ngrams with this size (set 0 to disable)."), | |
gr.Number(label="Translation - Num Beams", precision=0, value=app_config.translation_num_beams, elem_id="translationNumBeams", info="Beam size (1 for greedy search)."), | |
gr.Checkbox(label="Translation - Torch Dtype float16", visible=torch.cuda.is_available(), value=app_config.translation_torch_dtype_float16, info="Load the float32 translation model with float16 when the system supports GPU (reducing VRAM usage, not applicable to models that have already been quantized, such as Ctranslate2, GPTQ, GGUF)", elem_id="translationTorchDtypeFloat16"), | |
gr.Radio(label="Translation - Using Bitsandbytes", visible=torch.cuda.is_available(), choices=[None, "int8", "int4"], value=app_config.translation_using_bitsandbytes, info="Load the float32 translation model into mixed-8bit or 4bit precision quantized model when the system supports GPU (reducing VRAM usage, not applicable to models that have already been quantized, such as Ctranslate2, GPTQ, GGUF)", elem_id="translationUsingBitsandbytes"), | |
} | |
common_vad_inputs = lambda : { | |
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD", elem_id="vad"), | |
gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window, elem_id="vadMergeWindow", info="If set, any adjacent speech sections that are at most this number of seconds apart will be automatically merged."), | |
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size, elem_id="vadMaxMergeSize", info="Disables merging of adjacent speech sections if they are this number of seconds long."), | |
gr.Number(label="VAD - Process Timeout (s)", precision=0, value=app_config.vad_process_timeout, elem_id="vadPocessTimeout", info="This configures the number of seconds until a process is killed due to inactivity, freeing RAM and video memory. The default value is 30 minutes."), | |
} | |
common_word_timestamps_inputs = lambda : { | |
gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps, elem_id="word_timestamps", info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment."), | |
gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words, elem_id="highlight_words", info="if word_timestamps is True, underline each word as it is spoken in srt and vtt"), | |
} | |
common_segments_filter_inputs = lambda : { | |
gr.Checkbox(label="Whisper Segments Filter", value=app_config.whisper_segments_filter, elem_id="whisperSegmentsFilter", info="Filter the results of Whisper transcribe with the following conditions. It is recommended to enable this feature when using the large-v3 model to avoid hallucinations.") if idx == 0 else | |
gr.Text(label=f"Filter {idx}", value=filterStr, elem_id=f"whisperSegmentsFilter{idx}") for idx, filterStr in enumerate([""] + app_config.whisper_segments_filters) | |
} | |
has_diarization_libs = Diarization.has_libraries() | |
if not has_diarization_libs: | |
print("Diarization libraries not found - disabling diarization") | |
app_config.diarization = False | |
common_diarization_inputs = lambda : { | |
gr.Checkbox(label="Diarization", value=app_config.diarization, interactive=has_diarization_libs, elem_id="diarization", info="Whether to perform speaker diarization"), | |
gr.Number(label="Diarization - Speakers", precision=0, value=app_config.diarization_speakers, interactive=has_diarization_libs, elem_id="diarization_speakers", info="The number of speakers to detect"), | |
gr.Number(label="Diarization - Min Speakers", precision=0, value=app_config.diarization_min_speakers, interactive=has_diarization_libs, elem_id="diarization_min_speakers", info="The minimum number of speakers to detect"), | |
gr.Number(label="Diarization - Max Speakers", precision=0, value=app_config.diarization_max_speakers, interactive=has_diarization_libs, elem_id="diarization_max_speakers", info="The maximum number of speakers to detect") | |
} | |
common_output = lambda : [ | |
gr.File(label="Download", height=200, elem_id="outputDownload"), | |
gr.Text(label="Transcription", autoscroll=False, show_copy_button=True, interactive=True, elem_id="outputTranscription", elem_classes="scroll-show"), | |
gr.Text(label="Segments", autoscroll=False, show_copy_button=True, interactive=True, elem_id="outputSegments", elem_classes="scroll-show"), | |
gr.Text(label="Filtered segment items", autoscroll=False, visible=False, show_copy_button=True, interactive=True, elem_id="outputFiltered", elem_classes="scroll-show"), | |
] | |
css = """ | |
.scroll-show textarea { | |
overflow-y: auto !important; | |
scrollbar-width: auto !important; | |
} | |
.scroll-show textarea::-webkit-scrollbar { | |
all: initial !important; | |
background: #f1f1f1 !important; | |
} | |
.scroll-show textarea::-webkit-scrollbar-thumb { | |
all: initial !important; | |
background: #a8a8a8 !important; | |
} | |
""" | |
is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0 | |
def create_transcribe(uiDescription: str, isQueueMode: bool, isFull: bool = False): | |
with gr.Blocks() as transcribe: | |
translateInput = gr.State(value="m2m100", elem_id = "translateInput") | |
sourceInput = gr.State(value="urlData", elem_id = "sourceInput") | |
gr.Markdown(uiDescription) | |
with gr.Row(): | |
with gr.Column(): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
with gr.Row(): | |
inputDict = common_whisper_inputs() | |
with gr.Tab(label="M2M100") as m2m100Tab: | |
with gr.Row(): | |
inputDict.update(common_m2m100_inputs()) | |
with gr.Tab(label="NLLB") as nllbTab: | |
with gr.Row(): | |
inputDict.update(common_nllb_inputs()) | |
with gr.Tab(label="MT5") as mt5Tab: | |
with gr.Row(): | |
inputDict.update(common_mt5_inputs()) | |
with gr.Tab(label="ALMA") as almaTab: | |
with gr.Row(): | |
inputDict.update(common_ALMA_inputs()) | |
with gr.Tab(label="madlad400") as madlad400Tab: | |
with gr.Row(): | |
inputDict.update(common_madlad400_inputs()) | |
with gr.Tab(label="seamless") as seamlessTab: | |
with gr.Row(): | |
inputDict.update(common_seamless_inputs()) | |
with gr.Tab(label="Llama") as llamaTab: | |
with gr.Row(): | |
inputDict.update(common_Llama_inputs()) | |
m2m100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [translateInput] ) | |
nllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [translateInput] ) | |
mt5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [translateInput] ) | |
almaTab.select(fn=lambda: "ALMA", inputs = [], outputs= [translateInput] ) | |
madlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [translateInput] ) | |
seamlessTab.select(fn=lambda: "seamless", inputs = [], outputs= [translateInput] ) | |
llamaTab.select(fn=lambda: "Llama", inputs = [], outputs= [translateInput] ) | |
with gr.Column(): | |
with gr.Tab(label="URL") as UrlTab: | |
inputDict.update({gr.Text(label="URL (YouTube, etc.)", elem_id = "urlData")}) | |
with gr.Tab(label="Upload") as UploadTab: | |
inputDict.update({gr.File(label="Upload Files", file_count="multiple", elem_id = "multipleFiles")}) | |
with gr.Tab(label="Microphone") as MicTab: | |
inputDict.update({gr.Audio(source="microphone", type="filepath", label="Microphone Input", elem_id = "microphoneData")}) | |
UrlTab.select(fn=lambda: "urlData", inputs = [], outputs= [sourceInput] ) | |
UploadTab.select(fn=lambda: "multipleFiles", inputs = [], outputs= [sourceInput] ) | |
MicTab.select(fn=lambda: "microphoneData", inputs = [], outputs= [sourceInput] ) | |
inputDict.update({gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task, elem_id = "task", info="Select the task - either \"transcribe\" to transcribe the audio to text, or \"translate\" to translate it to English.")}) | |
with gr.Accordion("VAD options", open=False): | |
inputDict.update(common_vad_inputs()) | |
if isFull: | |
inputDict.update({ | |
gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding, elem_id = "vadPadding", info="The number of seconds (floating point) to add to the beginning and end of each speech section. Setting this to a number larger than zero ensures that Whisper is more likely to correctly transcribe a sentence in the beginning of a speech section. However, this also increases the probability of Whisper assigning the wrong timestamp to each transcribed line. The default value is 1 second."), | |
gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window, elem_id = "vadPromptWindow", info="The text of a detected line will be included as a prompt to the next speech section, if the speech section starts at most this number of seconds after the line has finished. For instance, if a line ends at 10:00, and the next speech section starts at 10:04, the line's text will be included if the prompt window is 4 seconds or more (10:04 - 10:00 = 4 seconds)."), | |
gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode", value=app_config.vad_initial_prompt_mode, elem_id = "vadInitialPromptMode", info="prepend_all_segments: prepend the initial prompt to each VAD segment, prepend_first_segment: just the first segment")}) | |
with gr.Accordion("Word Timestamps options", open=False): | |
inputDict.update(common_word_timestamps_inputs()) | |
if isFull: | |
inputDict.update({ | |
gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations, elem_id = "prepend_punctuations", info="if word_timestamps is True, merge these punctuation symbols with the next word"), | |
gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations, elem_id = "append_punctuations", info="if word_timestamps is True, merge these punctuation symbols with the previous word")}) | |
if isFull: | |
with gr.Accordion("Whisper Advanced options", open=False): | |
inputDict.update({ | |
gr.TextArea(label="Initial Prompt", elem_id = "initial_prompt", info="Optional text to provide as a prompt for the first window"), | |
gr.Number(label="Temperature", value=app_config.temperature, elem_id = "temperature", info="Temperature to use for sampling"), | |
gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0, elem_id = "best_of", info="Number of candidates when sampling with non-zero temperature"), | |
gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0, elem_id = "beam_size", info="Number of beams in beam search, only applicable when temperature is zero"), | |
gr.Number(label="Patience - Zero temperature", value=app_config.patience, elem_id = "patience", info="Optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search"), | |
gr.Number(label="Length Penalty - Any temperature", value=lambda : None if app_config.length_penalty is None else app_config.length_penalty, elem_id = "length_penalty", info="Optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default"), | |
gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens, elem_id = "suppress_tokens", info="Comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations"), | |
gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text, elem_id = "condition_on_previous_text", info="If True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop"), | |
gr.Checkbox(label="FP16", value=app_config.fp16, elem_id = "fp16", info="Whether to perform inference in fp16; True by default; It will be ignored in faster-whisper because it is already a quantized model."), | |
gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback, elem_id = "temperature_increment_on_fallback", info="Temperature to increase when falling back when the decoding fails to meet either of the thresholds below"), | |
gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold, elem_id = "compression_ratio_threshold", info="If the gzip compression ratio is higher than this value, treat the decoding as failed"), | |
gr.Number(label="Logprob threshold", value=app_config.logprob_threshold, elem_id = "logprob_threshold", info="If the average log probability is lower than this value, treat the decoding as failed"), | |
gr.Number(label="No speech threshold", value=app_config.no_speech_threshold, elem_id = "no_speech_threshold", info="If the probability of the <no-speech> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence"), | |
}) | |
if app_config.whisper_implementation == "faster-whisper": | |
inputDict.update({ | |
gr.Number(label="Repetition Penalty", value=app_config.repetition_penalty, elem_id = "repetition_penalty", info="[faster-whisper] The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0."), | |
gr.Number(label="No Repeat Ngram Size", value=app_config.no_repeat_ngram_size, precision=0, elem_id = "no_repeat_ngram_size", info="[faster-whisper] The model ensures that a sequence of words of no_repeat_ngram_size isn’t repeated in the output sequence. If specified, it must be a positive integer greater than 1.") | |
}) | |
with gr.Accordion("Whisper Segments Filter options", open=False): | |
inputDict.update(common_segments_filter_inputs()) | |
with gr.Accordion("Diarization options", open=False): | |
inputDict.update(common_diarization_inputs()) | |
with gr.Accordion("Translation options", open=False): | |
inputDict.update(common_translation_inputs()) | |
with gr.Column(): | |
outputs = common_output() | |
gr.Markdown(uiArticle) | |
if optionsMd is not None: | |
with gr.Accordion("docs/options.md", open=False): | |
gr.Markdown(optionsMd) | |
if translateModelMd is not None: | |
with gr.Accordion("docs/translateModel.md", open=False): | |
gr.Markdown(translateModelMd) | |
if readmeMd is not None: | |
with gr.Accordion("README.md", open=False): | |
gr.Markdown(readmeMd) | |
inputDict.update({translateInput, sourceInput}) | |
submitBtn.click(fn=ui.transcribe_entry_progress if isQueueMode else ui.transcribe_entry, | |
inputs=inputDict, outputs=outputs) | |
return transcribe | |
def create_translation(isQueueMode: bool): | |
with gr.Blocks() as translation: | |
translateInput = gr.State(value="m2m100", elem_id = "translateInput") | |
with gr.Row(): | |
with gr.Column(): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
with gr.Tab(label="M2M100") as m2m100Tab: | |
with gr.Row(): | |
inputDict = common_m2m100_inputs() | |
with gr.Tab(label="NLLB") as nllbTab: | |
with gr.Row(): | |
inputDict.update(common_nllb_inputs()) | |
with gr.Tab(label="MT5") as mt5Tab: | |
with gr.Row(): | |
inputDict.update(common_mt5_inputs()) | |
with gr.Tab(label="ALMA") as almaTab: | |
with gr.Row(): | |
inputDict.update(common_ALMA_inputs()) | |
with gr.Tab(label="madlad400") as madlad400Tab: | |
with gr.Row(): | |
inputDict.update(common_madlad400_inputs()) | |
with gr.Tab(label="seamless") as seamlessTab: | |
with gr.Row(): | |
inputDict.update(common_seamless_inputs()) | |
with gr.Tab(label="Llama") as llamaTab: | |
with gr.Row(): | |
inputDict.update(common_Llama_inputs()) | |
m2m100Tab.select(fn=lambda: "m2m100", inputs = [], outputs= [translateInput] ) | |
nllbTab.select(fn=lambda: "nllb", inputs = [], outputs= [translateInput] ) | |
mt5Tab.select(fn=lambda: "mt5", inputs = [], outputs= [translateInput] ) | |
almaTab.select(fn=lambda: "ALMA", inputs = [], outputs= [translateInput] ) | |
madlad400Tab.select(fn=lambda: "madlad400", inputs = [], outputs= [translateInput] ) | |
seamlessTab.select(fn=lambda: "seamless", inputs = [], outputs= [translateInput] ) | |
llamaTab.select(fn=lambda: "Llama", inputs = [], outputs= [translateInput] ) | |
with gr.Column(): | |
inputDict.update({ | |
gr.Dropdown(label="Input - Language", choices=sorted(get_lang_whisper_names()), value=app_config.language, elem_id="inputLangName"), | |
gr.Text(lines=5, label="Input - Text", elem_id="inputText", elem_classes="scroll-show"), | |
}) | |
with gr.Column(): | |
with gr.Accordion("Translation options", open=False): | |
inputDict.update(common_translation_inputs()) | |
inputDict.update({ gr.Checkbox(label="Translation - Enbale bilingual", value=True, info="Determines whether to enable bilingual translation results", elem_id="translationEnbaleBilingual"), | |
gr.Checkbox(label="Translation - Detect line breaks", value=False, info="Determines whether to enable detecting line breaks in the text. If enabled, it will concatenate lines before translation", elem_id="translationDetectLineBreaks"),}) | |
with gr.Column(): | |
outputs = [gr.Text(label="Translation Text", autoscroll=False, show_copy_button=True, interactive=True, elem_id="outputTranslationText", elem_classes="scroll-show"),] | |
if translateModelMd is not None: | |
with gr.Accordion("docs/translateModel.md", open=False): | |
gr.Markdown(translateModelMd) | |
inputDict.update({translateInput}) | |
submitBtn.click(fn=ui.translation_entry_progress if isQueueMode else ui.translation_entry, | |
inputs=inputDict, outputs=outputs) | |
return translation | |
simpleTranscribe = create_transcribe(uiDescription, is_queue_mode) | |
fullDescription = uiDescription + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash." | |
fullTranscribe = create_transcribe(fullDescription, is_queue_mode, True) | |
uiTranslation = create_translation(is_queue_mode) | |
demo = gr.TabbedInterface([simpleTranscribe, fullTranscribe, uiTranslation], tab_names=["Simple", "Full", "Translation"], css=css) | |
# Queue up the demo | |
if is_queue_mode: | |
demo.queue(concurrency_count=app_config.queue_concurrency_count) | |
print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")") | |
else: | |
print("Queue mode disabled - progress bars will not be shown.") | |
demo.launch(inbrowser=app_config.autolaunch, share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port) | |
# Clean up | |
ui.close() | |
if __name__ == '__main__': | |
default_app_config = ApplicationConfig.create_default() | |
whisper_models = default_app_config.get_model_names("whisper") | |
# Environment variable overrides | |
default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation) | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \ | |
help="Maximum audio file length in seconds, or -1 for no limit.") # 600 | |
parser.add_argument("--share", type=bool, default=default_app_config.share, \ | |
help="True to share the app on HuggingFace.") # False | |
parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \ | |
help="The host or IP to bind to. If None, bind to localhost.") # None | |
parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \ | |
help="The port to bind to.") # 7860 | |
parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \ | |
help="The number of concurrent requests to process.") # 1 | |
parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \ | |
help="The default model name.") # medium | |
parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \ | |
help="The default VAD.") # silero-vad | |
parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \ | |
help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") # prepend_first_segment | |
parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \ | |
help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") # "" | |
parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \ | |
help="The number of CPU cores to use for VAD pre-processing.") # 1 | |
parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \ | |
help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") # 1800 | |
parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \ | |
help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") # False | |
parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \ | |
help="directory to save the outputs") | |
parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\ | |
help="the Whisper implementation to use") | |
parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \ | |
help="the compute type to use for inference") | |
parser.add_argument("--threads", type=optional_int, default=0, | |
help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS") | |
parser.add_argument("--vad_max_merge_size", type=int, default=default_app_config.vad_max_merge_size, \ | |
help="The number of VAD - Max Merge Size (s).") # 30 | |
parser.add_argument("--language", type=str, default=None, choices=sorted(get_lang_whisper_names()) + sorted([k.title() for k in _TO_LANG_CODE_WHISPER.keys()]), | |
help="language spoken in the audio, specify None to perform language detection") | |
parser.add_argument("--save_downloaded_files", action='store_true', \ | |
help="True to move downloaded files to outputs directory. This argument will take effect only after output_dir is set.") | |
parser.add_argument("--merge_subtitle_with_sources", action='store_true', \ | |
help="True to merge subtitle(srt) with sources and move the sources files to the outputs directory. This argument will take effect only after output_dir is set.") | |
parser.add_argument("--input_max_file_name_length", type=int, default=100, \ | |
help="Maximum length of a file name.") | |
parser.add_argument("--autolaunch", action='store_true', \ | |
help="open the webui URL in the system's default browser upon launch") | |
parser.add_argument('--auth_token', type=str, default=default_app_config.auth_token, help='HuggingFace API Token (optional)') | |
parser.add_argument("--diarization", type=str2bool, default=default_app_config.diarization, \ | |
help="whether to perform speaker diarization") | |
parser.add_argument("--diarization_num_speakers", type=int, default=default_app_config.diarization_speakers, help="Number of speakers") | |
parser.add_argument("--diarization_min_speakers", type=int, default=default_app_config.diarization_min_speakers, help="Minimum number of speakers") | |
parser.add_argument("--diarization_max_speakers", type=int, default=default_app_config.diarization_max_speakers, help="Maximum number of speakers") | |
parser.add_argument("--diarization_process_timeout", type=int, default=default_app_config.diarization_process_timeout, \ | |
help="Number of seconds before inactivate diarization processes are terminated. Use 0 to close processes immediately, or None for no timeout.") | |
args = parser.parse_args().__dict__ | |
updated_config = default_app_config.update(**args) | |
# updated_config.whisper_implementation = "faster-whisper" | |
# updated_config.input_audio_max_duration = -1 | |
# updated_config.default_model_name = "large-v2" | |
# updated_config.output_dir = "output" | |
# updated_config.vad_max_merge_size = 90 | |
# updated_config.merge_subtitle_with_sources = False | |
# updated_config.autolaunch = True | |
# updated_config.auto_parallel = False | |
# updated_config.save_downloaded_files = True | |
try: | |
if torch.cuda.is_available(): | |
deviceId = torch.cuda.current_device() | |
totalVram = torch.cuda.get_device_properties(deviceId).total_memory | |
if totalVram/(1024*1024*1024) <= 4: #VRAM <= 4 GB | |
updated_config.vad_process_timeout = 0 | |
except Exception as e: | |
print(traceback.format_exc()) | |
print("Error detect vram: " + str(e)) | |
if (threads := args.pop("threads")) > 0: | |
torch.set_num_threads(threads) | |
print("Using whisper implementation: " + updated_config.whisper_implementation) | |
create_ui(app_config=updated_config) |