CultriX commited on
Commit
8012c4e
Β·
verified Β·
1 Parent(s): 20b3456

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -27
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import streamlit as st
2
  import pandas as pd
3
- from huggingface_hub import HfApi, ModelCard, login
4
  from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
5
  import re
6
  from io import StringIO
@@ -16,26 +16,21 @@ def cached_model_info(_api, model):
16
  """Fetch model information from the Hugging Face API and cache the result."""
17
  try:
18
  return _api.model_info(repo_id=str(model))
19
- except (RepositoryNotFoundError, RevisionNotFoundError) as e:
20
- st.error(f"Error fetching model info for {model}: {str(e)}")
21
- return None
22
- except Exception as e:
23
- st.error(f"Unexpected error fetching model info for {model}: {str(e)}")
24
  return None
25
 
26
  @st.cache_data
27
  def get_model_info(df):
28
  """Get model information and update the DataFrame with likes and tags."""
29
  api = HfApi()
30
- with st.spinner("Fetching model information..."):
31
- for index, row in df.iterrows():
32
- model_info = cached_model_info(api, row['Model'].strip())
33
- if model_info:
34
- df.loc[index, 'Likes'] = model_info.likes
35
- df.loc[index, 'Tags'] = ', '.join(model_info.tags)
36
- else:
37
- df.loc[index, 'Likes'] = -1
38
- df.loc[index, 'Tags'] = ''
39
  return df
40
 
41
  def convert_markdown_table_to_dataframe(md_content):
@@ -99,23 +94,11 @@ def fetch_merge_configs(df):
99
  except Exception as e:
100
  st.error(f"Error while fetching merge configs: {str(e)}")
101
 
102
- def authenticate_hf():
103
- """Authenticate with the Hugging Face API."""
104
- token = st.text_input("Enter your Hugging Face API token", type="password")
105
- if token:
106
- login(token=token)
107
- st.success("Authenticated successfully")
108
- else:
109
- st.warning("You need to enter a Hugging Face API token to access private or gated models")
110
-
111
  def main():
112
  """Main function to set up the Streamlit app and display the leaderboard."""
113
  st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
114
  st.title("πŸ† YALL - Yet Another LLM Leaderboard")
115
  st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")
116
-
117
- authenticate_hf()
118
-
119
  content = create_yall()
120
  tab1, tab2 = st.tabs(["πŸ† Leaderboard", "πŸ“ About"])
121
 
 
1
  import streamlit as st
2
  import pandas as pd
3
+ from huggingface_hub import HfApi, ModelCard
4
  from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
5
  import re
6
  from io import StringIO
 
16
  """Fetch model information from the Hugging Face API and cache the result."""
17
  try:
18
  return _api.model_info(repo_id=str(model))
19
+ except (RepositoryNotFoundError, RevisionNotFoundError):
 
 
 
 
20
  return None
21
 
22
  @st.cache_data
23
  def get_model_info(df):
24
  """Get model information and update the DataFrame with likes and tags."""
25
  api = HfApi()
26
+ for index, row in df.iterrows():
27
+ model_info = cached_model_info(api, row['Model'].strip())
28
+ if model_info:
29
+ df.loc[index, 'Likes'] = model_info.likes
30
+ df.loc[index, 'Tags'] = ', '.join(model_info.tags)
31
+ else:
32
+ df.loc[index, 'Likes'] = -1
33
+ df.loc[index, 'Tags'] = ''
 
34
  return df
35
 
36
  def convert_markdown_table_to_dataframe(md_content):
 
94
  except Exception as e:
95
  st.error(f"Error while fetching merge configs: {str(e)}")
96
 
 
 
 
 
 
 
 
 
 
97
  def main():
98
  """Main function to set up the Streamlit app and display the leaderboard."""
99
  st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
100
  st.title("πŸ† YALL - Yet Another LLM Leaderboard")
101
  st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")
 
 
 
102
  content = create_yall()
103
  tab1, tab2 = st.tabs(["πŸ† Leaderboard", "πŸ“ About"])
104