Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from huggingface_hub import HfApi | |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError | |
from itertools import combinations | |
import re | |
from functools import cache | |
from io import StringIO | |
from yall import create_yall | |
import plotly.graph_objs as go | |
def calculate_pages(df, items_per_page): | |
return -(-len(df) // items_per_page) # Equivalent to math.ceil(len(df) / items_per_page) | |
# Function to get model info from Hugging Face API using caching | |
def cached_model_info(api, model): | |
try: | |
return api.model_info(repo_id=str(model)) | |
except (RepositoryNotFoundError, RevisionNotFoundError): | |
return None | |
# Function to get model info from DataFrame and update it with likes and tags | |
def get_model_info(df): | |
api = HfApi() | |
for index, row in df.iterrows(): | |
model_info = cached_model_info(api, row['Model'].strip()) | |
if model_info: | |
df.loc[index, 'Likes'] = model_info.likes | |
df.loc[index, 'Tags'] = ', '.join(model_info.tags) | |
else: | |
df.loc[index, 'Likes'] = -1 | |
df.loc[index, 'Tags'] = '' | |
return df | |
# Function to convert markdown table to DataFrame and extract Hugging Face URLs | |
def convert_markdown_table_to_dataframe(md_content): | |
""" | |
Converts markdown table to Pandas DataFrame, handling special characters and links, | |
extracts Hugging Face URLs, and adds them to a new column. | |
""" | |
# Remove leading and trailing | characters | |
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE) | |
# Create DataFrame from cleaned content | |
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python') | |
# Remove the first row after the header | |
df = df.drop(0, axis=0) | |
# Strip whitespace from column names | |
df.columns = df.columns.str.strip() | |
# Extract Hugging Face URLs and add them to a new column | |
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)' | |
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None) | |
# Clean Model column to have only the model link text | |
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x)) | |
return df | |
def get_model_info(df): | |
api = HfApi() | |
# Initialize new columns for likes and tags | |
df['Likes'] = None | |
df['Tags'] = None | |
# Iterate through DataFrame rows | |
for index, row in df.iterrows(): | |
model = row['Model'].strip() | |
try: | |
model_info = api.model_info(repo_id=str(model)) | |
df.loc[index, 'Likes'] = model_info.likes | |
df.loc[index, 'Tags'] = ', '.join(model_info.tags) | |
except (RepositoryNotFoundError, RevisionNotFoundError): | |
df.loc[index, 'Likes'] = -1 | |
df.loc[index, 'Tags'] = '' | |
return df | |
def calculate_highest_combined_score(data, column): | |
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench'] | |
# Ensure the column exists and has numeric data | |
if column not in data.columns or not pd.api.types.is_numeric_dtype(data[column]): | |
return column, {} | |
scores = data[column].dropna().tolist() | |
models = data['Model'].tolist() | |
top_combinations = {r: [] for r in range(2, 5)} | |
for r in range(2, 5): | |
for combination in combinations(zip(scores, models), r): | |
combined_score = sum(score for score, _ in combination) | |
top_combinations[r].append((combined_score, tuple(model for _, model in combination))) | |
top_combinations[r].sort(key=lambda x: x[0], reverse=True) | |
top_combinations[r] = top_combinations[r][:5] | |
return column, top_combinations | |
# Modified function to display the results of the highest combined scores using st.dataframe | |
def display_highest_combined_scores(data): | |
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench'] | |
with st.spinner('Calculating highest combined scores...'): | |
results = [calculate_highest_combined_score(data, col) for col in score_columns] | |
for column, top_combinations in results: | |
st.subheader(f"Top Combinations for {column}") | |
for r, combinations in top_combinations.items(): | |
# Prepare data for DataFrame | |
rows = [{'Score': score, 'Models': ', '.join(combination)} for score, combination in combinations] | |
df = pd.DataFrame(rows) | |
# Display using st.dataframe | |
st.markdown(f"**Number of Models: {r}**") | |
st.dataframe(df, height=150) # Adjust height as necessary | |
# Function to create bar chart for a given category | |
def create_bar_chart(df, category): | |
"""Create and display a bar chart for a given category.""" | |
st.write(f"### {category} Scores") | |
# Sort the DataFrame based on the category score | |
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True) | |
# Create the bar chart with a color gradient (using 'Viridis' color scale as an example) | |
fig = go.Figure(go.Bar( | |
x=sorted_df[category], | |
y=sorted_df['Model'], | |
orientation='h', | |
marker=dict(color=sorted_df[category], colorscale='Spectral') # You can change 'Viridis' to another color scale | |
)) | |
# Update layout for better readability | |
fig.update_layout( | |
margin=dict(l=20, r=20, t=20, b=20) | |
) | |
# Adjust the height of the chart based on the number of rows in the DataFrame | |
st.plotly_chart(fig, use_container_width=True, height=len(df) * 35) | |
# Main function to run the Streamlit app | |
def main(): | |
# Set page configuration and title | |
st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide") | |
st.title("π YALL - Yet Another LLM Leaderboard") | |
st.markdown("Leaderboard made with π§ [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.") | |
# Create tabs for leaderboard and about section | |
content = create_yall() | |
tab1, tab2 = st.tabs(["π Leaderboard", "π About"]) | |
# Leaderboard tab | |
with tab1: | |
if content: | |
try: | |
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench'] | |
# Display dataframe | |
full_df = convert_markdown_table_to_dataframe(content) | |
for col in score_columns: | |
# Corrected use of pd.to_numeric | |
full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce') | |
full_df = get_model_info(full_df) | |
full_df['Tags'] = full_df['Tags'].fillna('') | |
df = pd.DataFrame(columns=full_df.columns) | |
# Toggles for filtering by tags | |
show_phi = st.checkbox("Phi (2.8B)", value=True) | |
show_mistral = st.checkbox("Mistral (7B)", value=True) | |
show_other = st.checkbox("Other", value=True) | |
# Create a DataFrame based on selected filters | |
dfs_to_concat = [] | |
if show_phi: | |
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('phi,|phi-msft,')]) | |
if show_mistral: | |
dfs_to_concat.append(full_df[full_df['Tags'].str.lower().str.contains('mistral,')]) | |
if show_other: | |
other_df = full_df[~full_df['Tags'].str.lower().str.contains('phi,|phi-msft,|mistral,')] | |
dfs_to_concat.append(other_df) | |
# Concatenate the DataFrames | |
if dfs_to_concat: | |
df = pd.concat(dfs_to_concat, ignore_index=True) | |
# Add a search bar | |
search_query = st.text_input("Search models", "") | |
# Filter the DataFrame based on the search query | |
if search_query: | |
df = df[df['Model'].str.contains(search_query, case=False)] | |
# Add a selectbox for page selection | |
items_per_page = 20 | |
pages = calculate_pages(df, items_per_page) | |
page = st.selectbox("Page", list(range(1, pages + 1))) | |
# Sort the DataFrame by 'Average' column in descending order | |
df = df.sort_values(by='Average', ascending=False) | |
# Slice the DataFrame based on the selected page | |
start = (page - 1) * items_per_page | |
end = start + items_per_page | |
df = df[start:end] | |
# Display the filtered DataFrame or the entire leaderboard | |
st.dataframe( | |
df[['Model'] + score_columns + ['Likes', 'URL']], | |
use_container_width=True, | |
column_config={ | |
"Likes": st.column_config.NumberColumn( | |
"Likes", | |
help="Number of likes on Hugging Face", | |
format="%d β€οΈ", | |
), | |
"URL": st.column_config.LinkColumn("URL"), | |
}, | |
hide_index=True, | |
height=len(df) * 37, | |
) | |
selected_models = st.multiselect('Select models to compare', df['Model'].unique()) | |
comparison_df = df[df['Model'].isin(selected_models)] | |
st.dataframe(comparison_df) | |
# Add a button to export data to CSV | |
if st.button("Export to CSV"): | |
# Export the DataFrame to CSV | |
csv_data = df.to_csv(index=False) | |
# Create a link to download the CSV file | |
st.download_button( | |
label="Download CSV", | |
data=csv_data, | |
file_name="leaderboard.csv", | |
key="download-csv", | |
help="Click to download the CSV file", | |
) | |
# Full-width plot for the first category | |
create_bar_chart(df, score_columns[0]) | |
# Next two plots in two columns | |
col1, col2 = st.columns(2) | |
with col1: | |
create_bar_chart(df, score_columns[1]) | |
with col2: | |
create_bar_chart(df, score_columns[2]) | |
# Last two plots in two columns | |
col3, col4 = st.columns(2) | |
with col3: | |
create_bar_chart(df, score_columns[3]) | |
with col4: | |
create_bar_chart(df, score_columns[4]) | |
display_highest_combined_scores(full_df) # Call to display the calculated scores | |
except Exception as e: | |
st.error("An error occurred while processing the markdown table.") | |
st.error(str(e)) | |
else: | |
st.error("Failed to download the content from the URL provided.") | |
# About tab | |
with tab2: | |
st.markdown(''' | |
### Nous benchmark suite | |
Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks: | |
* [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math` | |
* **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa` | |
* [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc` | |
* [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects` | |
### Reproducibility | |
You can easily reproduce these results using π§ [LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf). | |
### Clone this space | |
You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables: | |
* Change the `gist_id` in [yall.py](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126). | |
* Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens)) | |
A special thanks to [gblazex](https://huggingface.co/gblazex) for providing many evaluations. | |
''') | |
# Run the main function if this script is run directly | |
if __name__ == "__main__": | |
main() | |