[fix] extend
Browse files- apg_guidance.py +6 -5
- app.py +1 -1
- pipeline_ace_step.py +13 -13
apg_guidance.py
CHANGED
@@ -17,14 +17,15 @@ def project(
|
|
17 |
dims=[-1, -2],
|
18 |
):
|
19 |
dtype = v0.dtype
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
v1 = torch.nn.functional.normalize(v1, dim=dims)
|
25 |
v0_parallel = (v0 * v1).sum(dim=dims, keepdim=True) * v1
|
26 |
v0_orthogonal = v0 - v0_parallel
|
27 |
-
return v0_parallel.to(dtype), v0_orthogonal.to(dtype)
|
28 |
|
29 |
|
30 |
def apg_forward(
|
|
|
17 |
dims=[-1, -2],
|
18 |
):
|
19 |
dtype = v0.dtype
|
20 |
+
device_type = v0.device.type
|
21 |
+
if device_type == "mps":
|
22 |
+
v0, v1 = v0.cpu(), v1.cpu()
|
23 |
+
|
24 |
+
v0, v1 = v0.double(), v1.double()
|
25 |
v1 = torch.nn.functional.normalize(v1, dim=dims)
|
26 |
v0_parallel = (v0 * v1).sum(dim=dims, keepdim=True) * v1
|
27 |
v0_orthogonal = v0 - v0_parallel
|
28 |
+
return v0_parallel.to(dtype).to(device_type), v0_orthogonal.to(dtype).to(device_type)
|
29 |
|
30 |
|
31 |
def apg_forward(
|
app.py
CHANGED
@@ -7,7 +7,7 @@ import os
|
|
7 |
|
8 |
parser = argparse.ArgumentParser()
|
9 |
parser.add_argument("--checkpoint_path", type=str, default=None)
|
10 |
-
parser.add_argument("--server_name", type=str, default="
|
11 |
parser.add_argument("--port", type=int, default=7860)
|
12 |
parser.add_argument("--device_id", type=int, default=0)
|
13 |
parser.add_argument("--share", action='store_true', default=False)
|
|
|
7 |
|
8 |
parser = argparse.ArgumentParser()
|
9 |
parser.add_argument("--checkpoint_path", type=str, default=None)
|
10 |
+
parser.add_argument("--server_name", type=str, default="127.0.0.1")
|
11 |
parser.add_argument("--port", type=int, default=7860)
|
12 |
parser.add_argument("--device_id", type=int, default=0)
|
13 |
parser.add_argument("--share", action='store_true', default=False)
|
pipeline_ace_step.py
CHANGED
@@ -68,8 +68,8 @@ class ACEStepPipeline:
|
|
68 |
if device.type == "cpu" and torch.backends.mps.is_available():
|
69 |
device = torch.device("mps")
|
70 |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
|
71 |
-
if device.type == "mps"
|
72 |
-
self.dtype = torch.
|
73 |
self.device = device
|
74 |
self.loaded = False
|
75 |
self.torch_compile = torch_compile
|
@@ -181,33 +181,33 @@ class ACEStepPipeline:
|
|
181 |
last_hidden_states = outputs.last_hidden_state
|
182 |
attention_mask = inputs["attention_mask"]
|
183 |
return last_hidden_states, attention_mask
|
184 |
-
|
185 |
def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10):
|
186 |
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
|
187 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
188 |
if self.text_encoder_model.device != device:
|
189 |
self.text_encoder_model.to(device)
|
190 |
-
|
191 |
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
|
192 |
handlers = []
|
193 |
-
|
194 |
def hook(module, input, output):
|
195 |
output[:] *= tau
|
196 |
return output
|
197 |
-
|
198 |
for i in range(l_min, l_max):
|
199 |
handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook)
|
200 |
handlers.append(handler)
|
201 |
-
|
202 |
with torch.no_grad():
|
203 |
outputs = self.text_encoder_model(**inputs)
|
204 |
last_hidden_states = outputs.last_hidden_state
|
205 |
-
|
206 |
for hook in handlers:
|
207 |
hook.remove()
|
208 |
-
|
209 |
return last_hidden_states
|
210 |
-
|
211 |
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
|
212 |
return last_hidden_states
|
213 |
|
@@ -236,7 +236,7 @@ class ACEStepPipeline:
|
|
236 |
|
237 |
def get_lang(self, text):
|
238 |
language = "en"
|
239 |
-
try:
|
240 |
_ = self.lang_segment.getTexts(text)
|
241 |
langCounts = self.lang_segment.getCounts()
|
242 |
language = langCounts[0][0]
|
@@ -912,9 +912,9 @@ class ACEStepPipeline:
|
|
912 |
|
913 |
if is_extend:
|
914 |
if to_right_pad_gt_latents is not None:
|
915 |
-
target_latents = torch.
|
916 |
if to_left_pad_gt_latents is not None:
|
917 |
-
target_latents = torch.
|
918 |
return target_latents
|
919 |
|
920 |
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="flac"):
|
|
|
68 |
if device.type == "cpu" and torch.backends.mps.is_available():
|
69 |
device = torch.device("mps")
|
70 |
self.dtype = torch.bfloat16 if dtype == "bfloat16" else torch.float32
|
71 |
+
if device.type == "mps":
|
72 |
+
self.dtype = torch.float32
|
73 |
self.device = device
|
74 |
self.loaded = False
|
75 |
self.torch_compile = torch_compile
|
|
|
181 |
last_hidden_states = outputs.last_hidden_state
|
182 |
attention_mask = inputs["attention_mask"]
|
183 |
return last_hidden_states, attention_mask
|
184 |
+
|
185 |
def get_text_embeddings_null(self, texts, device, text_max_length=256, tau=0.01, l_min=8, l_max=10):
|
186 |
inputs = self.text_tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=text_max_length)
|
187 |
inputs = {key: value.to(device) for key, value in inputs.items()}
|
188 |
if self.text_encoder_model.device != device:
|
189 |
self.text_encoder_model.to(device)
|
190 |
+
|
191 |
def forward_with_temperature(inputs, tau=0.01, l_min=8, l_max=10):
|
192 |
handlers = []
|
193 |
+
|
194 |
def hook(module, input, output):
|
195 |
output[:] *= tau
|
196 |
return output
|
197 |
+
|
198 |
for i in range(l_min, l_max):
|
199 |
handler = self.text_encoder_model.encoder.block[i].layer[0].SelfAttention.q.register_forward_hook(hook)
|
200 |
handlers.append(handler)
|
201 |
+
|
202 |
with torch.no_grad():
|
203 |
outputs = self.text_encoder_model(**inputs)
|
204 |
last_hidden_states = outputs.last_hidden_state
|
205 |
+
|
206 |
for hook in handlers:
|
207 |
hook.remove()
|
208 |
+
|
209 |
return last_hidden_states
|
210 |
+
|
211 |
last_hidden_states = forward_with_temperature(inputs, tau, l_min, l_max)
|
212 |
return last_hidden_states
|
213 |
|
|
|
236 |
|
237 |
def get_lang(self, text):
|
238 |
language = "en"
|
239 |
+
try:
|
240 |
_ = self.lang_segment.getTexts(text)
|
241 |
langCounts = self.lang_segment.getCounts()
|
242 |
language = langCounts[0][0]
|
|
|
912 |
|
913 |
if is_extend:
|
914 |
if to_right_pad_gt_latents is not None:
|
915 |
+
target_latents = torch.cat([target_latents, to_right_pad_gt_latents], dim=-1)
|
916 |
if to_left_pad_gt_latents is not None:
|
917 |
+
target_latents = torch.cat([to_right_pad_gt_latents, target_latents], dim=0)
|
918 |
return target_latents
|
919 |
|
920 |
def latents2audio(self, latents, target_wav_duration_second=30, sample_rate=48000, save_path=None, format="flac"):
|