Culda commited on
Commit
1fa6fb3
·
1 Parent(s): a56cb8b

try flux1 official

Browse files
Files changed (1) hide show
  1. app.py +191 -52
app.py CHANGED
@@ -1,65 +1,204 @@
1
- import torch
2
  import gradio as gr
3
- from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
4
- from diffusers.models.controlnet_flux import FluxControlNetModel
5
- from controlnet_aux import CannyDetector
 
 
 
 
6
 
7
  dtype = torch.bfloat16
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
 
10
- base_model = "black-forest-labs/FLUX.1-schnell"
11
- controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
12
-
13
- controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
14
- pipe = FluxPipeline.from_pretrained(
15
- base_model, controlnet=controlnet, torch_dtype=dtype
16
- ).to(device)
17
-
18
- pipe.enable_model_cpu_offload()
19
- # pipe.to("cuda")
20
 
21
- canny = CannyDetector()
 
22
 
 
23
 
24
- def inpaint(
25
- image,
26
- mask,
27
- prompt,
28
- strength,
29
- num_inference_steps,
30
- guidance_scale,
31
- controlnet_conditioning_scale,
32
- ):
33
- canny_image = canny(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- image_res = pipe(
36
- prompt,
37
- image=image,
38
- control_image=canny_image,
39
- controlnet_conditioning_scale=controlnet_conditioning_scale,
40
- mask_image=mask,
41
- strength=strength,
42
- num_inference_steps=num_inference_steps,
43
- guidance_scale=guidance_scale,
44
- ).images[0]
45
 
46
- return image_res
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
- iface = gr.Interface(
50
- fn=inpaint,
51
- inputs=[
52
- gr.Image(type="pil", label="Input Image"),
53
- gr.Image(type="pil", label="Mask Image"),
54
- gr.Textbox(label="Prompt"),
55
- gr.Slider(0, 1, value=0.95, label="Strength"),
56
- gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
57
- gr.Slider(0, 20, value=5, label="Guidance Scale"),
58
- gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
59
- ],
60
- outputs=gr.Image(type="pil", label="Output Image"),
61
- title="Flux Inpaint AI Model",
62
- description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
63
- )
64
 
65
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ # import spaces
5
+ import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
+ # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
 
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
16
+ torch.cuda.empty_cache()
 
 
 
 
 
 
17
 
18
+ MAX_SEED = np.iinfo(np.int32).max
19
+ MAX_IMAGE_SIZE = 2048
20
 
21
+ # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
 
23
+ # @spaces.GPU(duration=75)
24
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
+ if randomize_seed:
26
+ seed = random.randint(0, MAX_SEED)
27
+ generator = torch.Generator().manual_seed(seed)
28
+
29
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
+ prompt=prompt,
31
+ guidance_scale=guidance_scale,
32
+ num_inference_steps=num_inference_steps,
33
+ width=width,
34
+ height=height,
35
+ generator=generator,
36
+ output_type="pil",
37
+ good_vae=good_vae,
38
+ ):
39
+ yield img, seed
40
+
41
+ examples = [
42
+ "a tiny astronaut hatching from an egg on the moon",
43
+ "a cat holding a sign that says hello world",
44
+ "an anime illustration of a wiener schnitzel",
45
+ ]
46
 
47
+ css="""
48
+ #col-container {
49
+ margin: 0 auto;
50
+ max-width: 520px;
51
+ }
52
+ """
 
 
 
 
53
 
54
+ with gr.Blocks(css=css) as demo:
55
+
56
+ with gr.Column(elem_id="col-container"):
57
+ gr.Markdown(f"""# FLUX.1 [dev]
58
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
+ """)
61
+
62
+ with gr.Row():
63
+
64
+ prompt = gr.Text(
65
+ label="Prompt",
66
+ show_label=False,
67
+ max_lines=1,
68
+ placeholder="Enter your prompt",
69
+ container=False,
70
+ )
71
+
72
+ run_button = gr.Button("Run", scale=0)
73
+
74
+ result = gr.Image(label="Result", show_label=False)
75
+
76
+ with gr.Accordion("Advanced Settings", open=False):
77
+
78
+ seed = gr.Slider(
79
+ label="Seed",
80
+ minimum=0,
81
+ maximum=MAX_SEED,
82
+ step=1,
83
+ value=0,
84
+ )
85
+
86
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
+
88
+ with gr.Row():
89
+
90
+ width = gr.Slider(
91
+ label="Width",
92
+ minimum=256,
93
+ maximum=MAX_IMAGE_SIZE,
94
+ step=32,
95
+ value=1024,
96
+ )
97
+
98
+ height = gr.Slider(
99
+ label="Height",
100
+ minimum=256,
101
+ maximum=MAX_IMAGE_SIZE,
102
+ step=32,
103
+ value=1024,
104
+ )
105
+
106
+ with gr.Row():
107
 
108
+ guidance_scale = gr.Slider(
109
+ label="Guidance Scale",
110
+ minimum=1,
111
+ maximum=15,
112
+ step=0.1,
113
+ value=3.5,
114
+ )
115
+
116
+ num_inference_steps = gr.Slider(
117
+ label="Number of inference steps",
118
+ minimum=1,
119
+ maximum=50,
120
+ step=1,
121
+ value=28,
122
+ )
123
+
124
+ gr.Examples(
125
+ examples = examples,
126
+ fn = infer,
127
+ inputs = [prompt],
128
+ outputs = [result, seed],
129
+ cache_examples="lazy"
130
+ )
131
 
132
+ gr.on(
133
+ triggers=[run_button.click, prompt.submit],
134
+ fn = infer,
135
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
+ outputs = [result, seed]
137
+ )
 
 
 
 
 
 
 
 
 
138
 
139
+ demo.launch()
140
+ # import torch
141
+ # import gradio as gr
142
+ # from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
143
+ # from diffusers.models.controlnet_flux import FluxControlNetModel
144
+ # from controlnet_aux import CannyDetector
145
+ #
146
+ # dtype = torch.bfloat16
147
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
148
+ #
149
+ # base_model = "black-forest-labs/FLUX.1-schnell"
150
+ # controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
151
+ #
152
+ # controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
153
+ # pipe = FluxPipeline.from_pretrained(
154
+ # base_model, controlnet=controlnet, torch_dtype=dtype
155
+ # ).to(device)
156
+ #
157
+ # pipe.enable_model_cpu_offload()
158
+ # # pipe.to("cuda")
159
+ #
160
+ # canny = CannyDetector()
161
+ #
162
+ #
163
+ # def inpaint(
164
+ # image,
165
+ # mask,
166
+ # prompt,
167
+ # strength,
168
+ # num_inference_steps,
169
+ # guidance_scale,
170
+ # controlnet_conditioning_scale,
171
+ # ):
172
+ # canny_image = canny(image)
173
+ #
174
+ # image_res = pipe(
175
+ # prompt,
176
+ # image=image,
177
+ # control_image=canny_image,
178
+ # controlnet_conditioning_scale=controlnet_conditioning_scale,
179
+ # mask_image=mask,
180
+ # strength=strength,
181
+ # num_inference_steps=num_inference_steps,
182
+ # guidance_scale=guidance_scale,
183
+ # ).images[0]
184
+ #
185
+ # return image_res
186
+ #
187
+ #
188
+ # iface = gr.Interface(
189
+ # fn=inpaint,
190
+ # inputs=[
191
+ # gr.Image(type="pil", label="Input Image"),
192
+ # gr.Image(type="pil", label="Mask Image"),
193
+ # gr.Textbox(label="Prompt"),
194
+ # gr.Slider(0, 1, value=0.95, label="Strength"),
195
+ # gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
196
+ # gr.Slider(0, 20, value=5, label="Guidance Scale"),
197
+ # gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
198
+ # ],
199
+ # outputs=gr.Image(type="pil", label="Output Image"),
200
+ # title="Flux Inpaint AI Model",
201
+ # description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
202
+ # )
203
+ #
204
+ # iface.launch()