Culda's picture
schnell
dcff146
raw
history blame
6.65 kB
import gradio as gr
import numpy as np
import random
# import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
# from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
# @spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()
# import torch
# import gradio as gr
# from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
# from diffusers.models.controlnet_flux import FluxControlNetModel
# from controlnet_aux import CannyDetector
#
# dtype = torch.bfloat16
# device = "cuda" if torch.cuda.is_available() else "cpu"
#
# base_model = "black-forest-labs/FLUX.1-schnell"
# controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
#
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
# pipe = FluxPipeline.from_pretrained(
# base_model, controlnet=controlnet, torch_dtype=dtype
# ).to(device)
#
# pipe.enable_model_cpu_offload()
# # pipe.to("cuda")
#
# canny = CannyDetector()
#
#
# def inpaint(
# image,
# mask,
# prompt,
# strength,
# num_inference_steps,
# guidance_scale,
# controlnet_conditioning_scale,
# ):
# canny_image = canny(image)
#
# image_res = pipe(
# prompt,
# image=image,
# control_image=canny_image,
# controlnet_conditioning_scale=controlnet_conditioning_scale,
# mask_image=mask,
# strength=strength,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# ).images[0]
#
# return image_res
#
#
# iface = gr.Interface(
# fn=inpaint,
# inputs=[
# gr.Image(type="pil", label="Input Image"),
# gr.Image(type="pil", label="Mask Image"),
# gr.Textbox(label="Prompt"),
# gr.Slider(0, 1, value=0.95, label="Strength"),
# gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
# gr.Slider(0, 20, value=5, label="Guidance Scale"),
# gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
# ],
# outputs=gr.Image(type="pil", label="Output Image"),
# title="Flux Inpaint AI Model",
# description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
# )
#
# iface.launch()