Culda's picture
flux dev
63f3c1a
raw
history blame
7.67 kB
import sentencepiece
import torch
import spaces
import gradio as gr
import os
from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import FluxControlNetInpaintPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel
from controlnet_aux import CannyDetector
# login hf token
HF_TOKEN = os.getenv("HF_TOKEN")
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
pipe = FluxControlNetInpaintPipeline.from_pretrained(
base_model, controlnet=controlnet, torch_dtype=dtype
).to(device)
pipe.enable_model_cpu_offload()
canny = CannyDetector()
@spaces.GPU(duration=75)
def inpaint(
image,
mask,
prompt,
strength,
num_inference_steps,
guidance_scale,
controlnet_conditioning_scale,
):
canny_image = canny(image)
image_res = pipe(
prompt,
image=image,
control_image=canny_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
mask_image=mask,
strength=strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
return image_res
iface = gr.Interface(
fn=inpaint,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Image(type="pil", label="Mask Image"),
gr.Textbox(label="Prompt"),
gr.Slider(0, 1, value=0.95, label="Strength"),
gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
gr.Slider(0, 20, value=5, label="Guidance Scale"),
gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
],
outputs=gr.Image(type="pil", label="Output Image"),
title="Flux Inpaint AI Model",
description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
)
iface.launch()
# import gradio as gr
# import numpy as np
# import random
# # import spaces
# import torch
# from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
# from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
# # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
#
# dtype = torch.bfloat16
# device = "cuda" if torch.cuda.is_available() else "cpu"
#
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
# torch.cuda.empty_cache()
#
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 2048
#
# # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
#
# # @spaces.GPU(duration=75)
# def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
#
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# output_type="pil",
# good_vae=good_vae,
# ):
# yield img, seed
#
# examples = [
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
# ]
#
# css="""
# #col-container {
# margin: 0 auto;
# max-width: 520px;
# }
# """
#
# with gr.Blocks(css=css) as demo:
#
# with gr.Column(elem_id="col-container"):
# gr.Markdown(f"""# FLUX.1 [dev]
# 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
# [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
# """)
#
# with gr.Row():
#
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
#
# run_button = gr.Button("Run", scale=0)
#
# result = gr.Image(label="Result", show_label=False)
#
# with gr.Accordion("Advanced Settings", open=False):
#
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
#
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
#
# with gr.Row():
#
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024,
# )
#
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024,
# )
#
# with gr.Row():
#
# guidance_scale = gr.Slider(
# label="Guidance Scale",
# minimum=1,
# maximum=15,
# step=0.1,
# value=3.5,
# )
#
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=28,
# )
#
# gr.Examples(
# examples = examples,
# fn = infer,
# inputs = [prompt],
# outputs = [result, seed],
# cache_examples="lazy"
# )
#
# gr.on(
# triggers=[run_button.click, prompt.submit],
# fn = infer,
# inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
# outputs = [result, seed]
# )
#
# demo.launch()