Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
if torch.cuda.is_available(): | |
device, dtype = "cuda", torch.float16 | |
else: | |
device, dtype = "cpu", torch.float32 | |
model_id = "vikhyatk/moondream2" | |
revision = "2024-04-02" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
moondream = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype | |
).to(device=device) | |
moondream.eval() | |
def answer_questions(image_tuples, prompt_text): | |
print(f"prompt_text:\n{prompt_text}\n") | |
print(f"image_tuples:\n{image_tuples}\n") | |
prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts | |
image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None | |
print(f"image_embeds:\n{image_embeds}\n") | |
print(f"split prompts:\n{prompts}\n") | |
answers = moondream.batch_answer( | |
images=image_embeds, | |
prompts=prompts, | |
tokenizer=tokenizer, | |
) | |
result = "" | |
for question, answer in zip(prompts, answers): | |
print(f"Q: {question}") | |
print(f"A: {answer}") | |
print() | |
result += (f"Q: {question}\nA: {answer}\n\n") | |
return result | |
with gr.Blocks() as demo: | |
gr.Markdown("# π moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)") | |
with gr.Row(): | |
img = gr.Gallery(label="Upload Images", type="pil") | |
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts separated by commas. Ex: Describe this image, What is in this image?", lines=2) | |
submit = gr.Button("Submit") | |
output = gr.TextArea(label="Responses", lines=4) | |
submit.click(answer_questions, [img, prompt], output) | |
demo.queue().launch() | |