Spaces:
Runtime error
Runtime error
Commit
·
e14c450
1
Parent(s):
d491fdb
Migrate to Diffusers (#1)
Browse files- Migrate to Diffusers (dd5f05cd759cb5f6d909295352441961ade3b48d)
Co-authored-by: Radamés Ajna <radames@users.noreply.huggingface.co>
- .gitignore +3 -0
- app.py +171 -89
- examples/.gitattributes +2 -0
- examples/image0.jpg +0 -0
- examples/image1.jpg +0 -0
- examples/pedro-512.jpg +0 -0
- examples/two.jpeg +0 -0
- examples/two2.jpeg +0 -0
- requirements.txt +3 -1
.gitignore
CHANGED
@@ -1 +1,4 @@
|
|
1 |
.idea
|
|
|
|
|
|
|
|
1 |
.idea
|
2 |
+
__pycache__/
|
3 |
+
venv/
|
4 |
+
gradio_cached_examples/
|
app.py
CHANGED
@@ -1,118 +1,200 @@
|
|
1 |
-
import os
|
2 |
import random
|
3 |
-
from typing import Mapping
|
4 |
|
5 |
import gradio as gr
|
6 |
-
import numpy
|
7 |
import torch
|
8 |
-
from
|
9 |
from PIL import Image
|
|
|
|
|
|
|
10 |
|
11 |
-
from cldm.model import create_model, load_state_dict
|
12 |
-
from cldm.ddim_hacked import DDIMSampler
|
13 |
from mediapipe_face_common import generate_annotation
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Download the SD 1.5 model from HF
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
|
18 |
-
|
19 |
-
model =
|
20 |
-
|
|
|
21 |
model = model.to(device)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
block = gr.Blocks().queue()
|
91 |
with block:
|
|
|
|
|
92 |
with gr.Row():
|
93 |
gr.Markdown("## Control Stable Diffusion with a Facial Pose")
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
prompt = gr.Textbox(label="Prompt")
|
98 |
run_button = gr.Button(label="Run")
|
99 |
with gr.Accordion("Advanced options", open=False):
|
100 |
-
num_samples = gr.Slider(
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
105 |
-
ddim_steps = gr.Slider(
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
109 |
-
a_prompt = gr.Textbox(
|
|
|
110 |
n_prompt = gr.Textbox(label="Negative Prompt",
|
111 |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
112 |
with gr.Column():
|
113 |
-
result_gallery = gr.Gallery(
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
block.launch(server_name='0.0.0.0')
|
|
|
|
|
1 |
import random
|
|
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
import torch
|
5 |
+
from diffusers.utils import load_image
|
6 |
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import base64
|
9 |
+
from io import BytesIO
|
10 |
|
|
|
|
|
11 |
from mediapipe_face_common import generate_annotation
|
12 |
|
13 |
+
from diffusers import (
|
14 |
+
ControlNetModel,
|
15 |
+
StableDiffusionControlNetPipeline,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
# Download the SD 1.5 model from HF
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
controlnet = ControlNetModel.from_pretrained(
|
22 |
+
"CrucibleAI/ControlNetMediaPipeFace", torch_dtype=torch.float16, variant="fp16")
|
23 |
+
model = StableDiffusionControlNetPipeline.from_pretrained(
|
24 |
+
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16
|
25 |
+
)
|
26 |
model = model.to(device)
|
27 |
+
model.enable_model_cpu_offload()
|
28 |
+
|
29 |
+
|
30 |
+
canvas_html = "<face-canvas id='canvas-root' data-mode='crucibleAI' style='display:flex;max-width: 500px;margin: 0 auto;'></face-canvas>"
|
31 |
+
load_js = """
|
32 |
+
async () => {
|
33 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/face-canvas.js"
|
34 |
+
fetch(url)
|
35 |
+
.then(res => res.text())
|
36 |
+
.then(text => {
|
37 |
+
const script = document.createElement('script');
|
38 |
+
script.type = "module"
|
39 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
40 |
+
document.head.appendChild(script);
|
41 |
+
});
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
get_js_image = """
|
45 |
+
async (input_image, prompt, a_prompt, n_prompt, max_faces, min_confidence, num_samples, ddim_steps, guess_mode, strength, scale, seed, eta, image_file_live_opt, live_conditioning) => {
|
46 |
+
const canvasEl = document.getElementById("canvas-root");
|
47 |
+
const imageData = canvasEl? canvasEl._data : null;
|
48 |
+
return [input_image, prompt, a_prompt, n_prompt, max_faces, min_confidence, num_samples, ddim_steps, guess_mode, strength, scale, seed, eta, image_file_live_opt, imageData];
|
49 |
+
}
|
50 |
+
"""
|
51 |
+
|
52 |
+
|
53 |
+
def pad_image(input_image):
|
54 |
+
pad_w, pad_h = np.max(((2, 2), np.ceil(
|
55 |
+
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
|
56 |
+
im_padded = Image.fromarray(
|
57 |
+
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
58 |
+
w, h = im_padded.size
|
59 |
+
if w == h:
|
60 |
+
return im_padded
|
61 |
+
elif w > h:
|
62 |
+
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
|
63 |
+
new_image.paste(im_padded, (0, (w - h) // 2))
|
64 |
+
return new_image
|
65 |
+
else:
|
66 |
+
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
|
67 |
+
new_image.paste(im_padded, ((h - w) // 2, 0))
|
68 |
+
return new_image
|
69 |
+
|
70 |
+
|
71 |
+
def process(input_image: Image.Image, prompt, a_prompt, n_prompt, max_faces: int, min_confidence: float, num_samples, ddim_steps, guess_mode, strength, scale, seed: int, eta, image_file_live_opt="file", live_conditioning=None):
|
72 |
+
if input_image is None and 'image' not in live_conditioning:
|
73 |
+
raise gr.Error("Please provide an image")
|
74 |
+
try:
|
75 |
+
if image_file_live_opt == 'file':
|
76 |
+
input_image = input_image.convert('RGB')
|
77 |
+
empty = generate_annotation(
|
78 |
+
np.array(input_image), max_faces, min_confidence)
|
79 |
+
visualization = Image.fromarray(empty) # Save to help debug.
|
80 |
+
visualization = pad_image(visualization).resize((512, 512))
|
81 |
+
elif image_file_live_opt == 'webcam':
|
82 |
+
base64_img = live_conditioning['image']
|
83 |
+
image_data = base64.b64decode(base64_img.split(',')[1])
|
84 |
+
visualization = Image.open(BytesIO(image_data)).convert(
|
85 |
+
'RGB').resize((512, 512))
|
86 |
+
if seed == -1:
|
87 |
+
seed = random.randint(0, 2147483647)
|
88 |
+
generator = torch.Generator(device).manual_seed(seed)
|
89 |
+
|
90 |
+
output = model(prompt=prompt + ' ' + a_prompt,
|
91 |
+
negative_prompt=n_prompt,
|
92 |
+
image=visualization,
|
93 |
+
generator=generator,
|
94 |
+
num_images_per_prompt=num_samples,
|
95 |
+
num_inference_steps=ddim_steps,
|
96 |
+
controlnet_conditioning_scale=strength,
|
97 |
+
guidance_scale=scale,
|
98 |
+
eta=eta,
|
99 |
+
)
|
100 |
+
results = [visualization] + output.images
|
101 |
+
|
102 |
+
return results
|
103 |
+
except Exception as e:
|
104 |
+
raise gr.Error(str(e))
|
105 |
+
|
106 |
+
# switch between file upload and webcam
|
107 |
+
|
108 |
+
|
109 |
+
def toggle(choice):
|
110 |
+
if choice == "file":
|
111 |
+
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
|
112 |
+
elif choice == "webcam":
|
113 |
+
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
|
114 |
|
115 |
|
116 |
block = gr.Blocks().queue()
|
117 |
with block:
|
118 |
+
# hidden JSON component to store live conditioning
|
119 |
+
live_conditioning = gr.JSON(value={}, visible=False)
|
120 |
with gr.Row():
|
121 |
gr.Markdown("## Control Stable Diffusion with a Facial Pose")
|
122 |
with gr.Row():
|
123 |
with gr.Column():
|
124 |
+
image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
|
125 |
+
label="How would you like to upload your image?")
|
126 |
+
input_image = gr.Image(source="upload", visible=True, type="pil")
|
127 |
+
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
|
128 |
+
|
129 |
+
image_file_live_opt.change(fn=toggle,
|
130 |
+
inputs=[image_file_live_opt],
|
131 |
+
outputs=[input_image, canvas],
|
132 |
+
queue=False)
|
133 |
+
|
134 |
prompt = gr.Textbox(label="Prompt")
|
135 |
run_button = gr.Button(label="Run")
|
136 |
with gr.Accordion("Advanced options", open=False):
|
137 |
+
num_samples = gr.Slider(
|
138 |
+
label="Images", minimum=1, maximum=4, value=1, step=1)
|
139 |
+
max_faces = gr.Slider(
|
140 |
+
label="Max Faces", minimum=1, maximum=10, value=5, step=1)
|
141 |
+
min_confidence = gr.Slider(
|
142 |
+
label="Min Confidence", minimum=0.01, maximum=1.0, value=0.5, step=0.01)
|
143 |
+
strength = gr.Slider(
|
144 |
+
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
145 |
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
146 |
+
ddim_steps = gr.Slider(
|
147 |
+
label="Steps", minimum=1, maximum=100, value=20, step=1)
|
148 |
+
scale = gr.Slider(label="Guidance Scale",
|
149 |
+
minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
150 |
+
seed = gr.Slider(label="Seed", minimum=-1,
|
151 |
+
maximum=2147483647, step=1, randomize=True)
|
152 |
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
153 |
+
a_prompt = gr.Textbox(
|
154 |
+
label="Added Prompt", value='best quality, extremely detailed')
|
155 |
n_prompt = gr.Textbox(label="Negative Prompt",
|
156 |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
157 |
with gr.Column():
|
158 |
+
result_gallery = gr.Gallery(
|
159 |
+
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
160 |
+
ips = [input_image, prompt, a_prompt, n_prompt, max_faces, min_confidence,
|
161 |
+
num_samples, ddim_steps, guess_mode, strength, scale, seed, eta]
|
162 |
+
run_button.click(fn=process, inputs=ips + [image_file_live_opt, live_conditioning],
|
163 |
+
outputs=[result_gallery],
|
164 |
+
_js=get_js_image)
|
165 |
+
|
166 |
+
# load js for live conditioning
|
167 |
+
block.load(None, None, None, _js=load_js)
|
168 |
+
gr.Examples(fn=process,
|
169 |
+
examples=[
|
170 |
+
["./examples/two2.jpeg",
|
171 |
+
"Highly detailed photograph of two clowns",
|
172 |
+
"best quality, extremely detailed",
|
173 |
+
"cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
174 |
+
10, 0.4, 3, 20, False, 1.0, 9.0, -1, 0.0],
|
175 |
+
["./examples/two.jpeg",
|
176 |
+
"a photo of two silly men",
|
177 |
+
"best quality, extremely detailed",
|
178 |
+
"cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
179 |
+
10, 0.4, 3, 20, False, 1.0, 9.0, -1, 0.0],
|
180 |
+
["./examples/pedro-512.jpg",
|
181 |
+
"Highly detailed photograph of young woman smiling, with palm trees in the background",
|
182 |
+
"best quality, extremely detailed",
|
183 |
+
"cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
184 |
+
10, 0.4, 3, 20, False, 1.0, 9.0, -1, 0.0],
|
185 |
+
["./examples/image1.jpg",
|
186 |
+
"Highly detailed photograph of a scary clown",
|
187 |
+
"best quality, extremely detailed",
|
188 |
+
"cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
189 |
+
10, 0.4, 3, 20, False, 1.0, 9.0, -1, 0.0],
|
190 |
+
["./examples/image0.jpg",
|
191 |
+
"Highly detailed photograph of Madonna",
|
192 |
+
"best quality, extremely detailed",
|
193 |
+
"cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
194 |
+
10, 0.4, 3, 20, False, 1.0, 9.0, -1, 0.0],
|
195 |
+
],
|
196 |
+
inputs=ips,
|
197 |
+
outputs=[result_gallery],
|
198 |
+
cache_examples=True)
|
199 |
|
200 |
block.launch(server_name='0.0.0.0')
|
examples/.gitattributes
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
examples/image0.jpg
ADDED
examples/image1.jpg
ADDED
examples/pedro-512.jpg
ADDED
examples/two.jpeg
ADDED
examples/two2.jpeg
ADDED
requirements.txt
CHANGED
@@ -11,4 +11,6 @@ timm
|
|
11 |
transformers==4.26.1
|
12 |
torch==1.13.1
|
13 |
torchvision==0.14.1
|
14 |
-
tqdm==4.64.1
|
|
|
|
|
|
11 |
transformers==4.26.1
|
12 |
torch==1.13.1
|
13 |
torchvision==0.14.1
|
14 |
+
tqdm==4.64.1
|
15 |
+
accelerate
|
16 |
+
diffusers
|