Spaces:
Runtime error
Runtime error
Joseph Catrambone
commited on
Commit
·
b5ecd5f
1
Parent(s):
b7e9473
Use CPU devices if CUDA is not available.
Browse files
app.py
CHANGED
@@ -13,11 +13,12 @@ from cldm.ddim_hacked import DDIMSampler
|
|
13 |
from mediapipe_face_common import generate_annotation
|
14 |
|
15 |
# Download the SD 1.5 model from HF
|
|
|
16 |
model_path = hf_hub_download(repo_id="CrucibleAI/ControlNetMediaPipeFace", filename="models/controlnet_sd21_laion_face_v2_full.ckpt", repo_type="model")
|
17 |
config_path = hf_hub_download(repo_id="CrucibleAI/ControlNetMediaPipeFace", filename="models/cldm_v21.yaml", repo_type="model")
|
18 |
model = create_model(config_path).cpu()
|
19 |
-
model.load_state_dict(load_state_dict(model_path, location=
|
20 |
-
model = model.
|
21 |
ddim_sampler = DDIMSampler(model) # ControlNet _only_ works with DDIM.
|
22 |
|
23 |
|
@@ -27,7 +28,7 @@ def process(input_image: Image.Image, prompt, a_prompt, n_prompt, max_faces: int
|
|
27 |
visualization = Image.fromarray(empty) # Save to help debug.
|
28 |
|
29 |
empty = numpy.moveaxis(empty, 2, 0) # h, w, c -> c, h, w
|
30 |
-
control = torch.from_numpy(empty.copy()).float().
|
31 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
32 |
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
33 |
|
|
|
13 |
from mediapipe_face_common import generate_annotation
|
14 |
|
15 |
# Download the SD 1.5 model from HF
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model_path = hf_hub_download(repo_id="CrucibleAI/ControlNetMediaPipeFace", filename="models/controlnet_sd21_laion_face_v2_full.ckpt", repo_type="model")
|
18 |
config_path = hf_hub_download(repo_id="CrucibleAI/ControlNetMediaPipeFace", filename="models/cldm_v21.yaml", repo_type="model")
|
19 |
model = create_model(config_path).cpu()
|
20 |
+
model.load_state_dict(load_state_dict(model_path, location=device))
|
21 |
+
model = model.to(device)
|
22 |
ddim_sampler = DDIMSampler(model) # ControlNet _only_ works with DDIM.
|
23 |
|
24 |
|
|
|
28 |
visualization = Image.fromarray(empty) # Save to help debug.
|
29 |
|
30 |
empty = numpy.moveaxis(empty, 2, 0) # h, w, c -> c, h, w
|
31 |
+
control = torch.from_numpy(empty.copy()).float().to(device) / 255.0
|
32 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
33 |
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
34 |
|