Spaces:
Runtime error
Runtime error
Joseph Catrambone
Prevent models from forcing tensors to CUDA. Increase the default max_faces from 1 to 5.
3dbb2cf
import os | |
import random | |
from typing import Mapping | |
import gradio as gr | |
import numpy | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from cldm.model import create_model, load_state_dict | |
from cldm.ddim_hacked import DDIMSampler | |
from mediapipe_face_common import generate_annotation | |
# Download the SD 1.5 model from HF | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_path = hf_hub_download(repo_id="CrucibleAI/ControlNetMediaPipeFace", filename="models/controlnet_sd21_laion_face_v2_full.ckpt", repo_type="model") | |
config_path = hf_hub_download(repo_id="CrucibleAI/ControlNetMediaPipeFace", filename="models/cldm_v21.yaml", repo_type="model") | |
model = create_model(config_path).cpu() | |
model.load_state_dict(load_state_dict(model_path, location=device)) | |
model = model.to(device) | |
ddim_sampler = DDIMSampler(model) # ControlNet _only_ works with DDIM. | |
def process(input_image: Image.Image, prompt, a_prompt, n_prompt, max_faces: int, min_confidence: float, num_samples, ddim_steps, guess_mode, strength, scale, seed: int, eta): | |
with torch.no_grad(): | |
empty = generate_annotation(input_image, max_faces, min_confidence) | |
visualization = Image.fromarray(empty) # Save to help debug. | |
empty = numpy.moveaxis(empty, 2, 0) # h, w, c -> c, h, w | |
control = torch.from_numpy(empty.copy()).float().to(device) / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
# control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
# Sanity check the dimensions. | |
B, C, H, W = control.shape | |
assert C == 3 | |
assert B == num_samples | |
if seed != -1: | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
numpy.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
# model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} | |
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
# model.low_vram_shift(is_diffusing=True) | |
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 | |
samples, intermediates = ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond | |
) | |
# model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(numpy.uint8) | |
x_samples = numpy.moveaxis((x_samples * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(numpy.uint8), 1, -1) # b, c, h, w -> b, h, w, c | |
results = [visualization] + [x_samples[i] for i in range(num_samples)] | |
return results | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Control Stable Diffusion with a Facial Pose") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
max_faces = gr.Slider(label="Max Faces", minimum=1, maximum=10, value=5, step=1) | |
min_confidence = gr.Slider(label="Min Confidence", minimum=0.01, maximum=1.0, value=0.5, step=0.01) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, max_faces, min_confidence, num_samples, ddim_steps, guess_mode, strength, scale, seed, eta] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(server_name='0.0.0.0') | |