Spaces:
Runtime error
Runtime error
initial upload hana houses
Browse files- app.py +30 -0
- blocks.py +325 -0
- image_generator.py +153 -0
- networks_fastgan.py +179 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import PyTorchModelHubMixin
|
3 |
+
import torch
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import torchvision
|
6 |
+
from networks_fastgan import MyGenerator
|
7 |
+
import click
|
8 |
+
import PIL
|
9 |
+
from image_generator import generate_images
|
10 |
+
|
11 |
+
def image_generation(model, number_of_images=1):
|
12 |
+
img = generate_images(model)
|
13 |
+
#return f"generating {number_of_images} images from {model}"
|
14 |
+
return img
|
15 |
+
if __name__ == "__main__":
|
16 |
+
description = "TODO: when generating only 1 image use an esrgan to increase its resolution \n TODO: allow generation of multiple images TODO: walk through input space video i have exams now c u in 2 weeks (:"
|
17 |
+
inputs = gr.inputs.Radio([ "Impressionism", "Abstract Expressionism", "Cubism", "Pop Art", "Color Field", "Hana Hanak houses", "Hana Hanak houses - abstract expressionism", "Hana Hanak houses - color field"])
|
18 |
+
outputs = gr.outputs.Image(label="Generated Image", type="pil")
|
19 |
+
#outputs = "text"
|
20 |
+
title = "Projected GAN for painting generation v0.2"
|
21 |
+
article = "<p style='text-align: center'><a href='https://github.com/autonomousvision/projected_gan'>Official projected GAN github repo + paper</a></p>"
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
gr.Interface(image_generation, inputs, outputs, title=title, article = article, description = description,
|
26 |
+
analytics_enabled=False).launch(debug=True)
|
27 |
+
|
28 |
+
app, local_url, share_url = iface.launch()
|
29 |
+
|
30 |
+
|
blocks.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.nn.utils import spectral_norm
|
6 |
+
|
7 |
+
|
8 |
+
### single layers
|
9 |
+
|
10 |
+
|
11 |
+
def conv2d(*args, **kwargs):
|
12 |
+
return spectral_norm(nn.Conv2d(*args, **kwargs))
|
13 |
+
|
14 |
+
|
15 |
+
def convTranspose2d(*args, **kwargs):
|
16 |
+
return spectral_norm(nn.ConvTranspose2d(*args, **kwargs))
|
17 |
+
|
18 |
+
|
19 |
+
def embedding(*args, **kwargs):
|
20 |
+
return spectral_norm(nn.Embedding(*args, **kwargs))
|
21 |
+
|
22 |
+
|
23 |
+
def linear(*args, **kwargs):
|
24 |
+
return spectral_norm(nn.Linear(*args, **kwargs))
|
25 |
+
|
26 |
+
|
27 |
+
def NormLayer(c, mode='batch'):
|
28 |
+
if mode == 'group':
|
29 |
+
return nn.GroupNorm(c//2, c)
|
30 |
+
elif mode == 'batch':
|
31 |
+
return nn.BatchNorm2d(c)
|
32 |
+
|
33 |
+
|
34 |
+
### Activations
|
35 |
+
|
36 |
+
|
37 |
+
class GLU(nn.Module):
|
38 |
+
def forward(self, x):
|
39 |
+
nc = x.size(1)
|
40 |
+
assert nc % 2 == 0, 'channels dont divide 2!'
|
41 |
+
nc = int(nc/2)
|
42 |
+
return x[:, :nc] * torch.sigmoid(x[:, nc:])
|
43 |
+
|
44 |
+
|
45 |
+
class Swish(nn.Module):
|
46 |
+
def forward(self, feat):
|
47 |
+
return feat * torch.sigmoid(feat)
|
48 |
+
|
49 |
+
|
50 |
+
### Upblocks
|
51 |
+
|
52 |
+
|
53 |
+
class InitLayer(nn.Module):
|
54 |
+
def __init__(self, nz, channel, sz=4):
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.init = nn.Sequential(
|
58 |
+
convTranspose2d(nz, channel*2, sz, 1, 0, bias=False),
|
59 |
+
NormLayer(channel*2),
|
60 |
+
GLU(),
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, noise):
|
64 |
+
noise = noise.view(noise.shape[0], -1, 1, 1)
|
65 |
+
return self.init(noise)
|
66 |
+
|
67 |
+
|
68 |
+
def UpBlockSmall(in_planes, out_planes):
|
69 |
+
block = nn.Sequential(
|
70 |
+
nn.Upsample(scale_factor=2, mode='nearest'),
|
71 |
+
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
|
72 |
+
NormLayer(out_planes*2), GLU())
|
73 |
+
return block
|
74 |
+
|
75 |
+
|
76 |
+
class UpBlockSmallCond(nn.Module):
|
77 |
+
def __init__(self, in_planes, out_planes, z_dim):
|
78 |
+
super().__init__()
|
79 |
+
self.in_planes = in_planes
|
80 |
+
self.out_planes = out_planes
|
81 |
+
self.up = nn.Upsample(scale_factor=2, mode='nearest')
|
82 |
+
self.conv = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False)
|
83 |
+
|
84 |
+
which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim)
|
85 |
+
self.bn = which_bn(2*out_planes)
|
86 |
+
self.act = GLU()
|
87 |
+
|
88 |
+
def forward(self, x, c):
|
89 |
+
x = self.up(x)
|
90 |
+
x = self.conv(x)
|
91 |
+
x = self.bn(x, c)
|
92 |
+
x = self.act(x)
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
def UpBlockBig(in_planes, out_planes):
|
97 |
+
block = nn.Sequential(
|
98 |
+
nn.Upsample(scale_factor=2, mode='nearest'),
|
99 |
+
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False),
|
100 |
+
NoiseInjection(),
|
101 |
+
NormLayer(out_planes*2), GLU(),
|
102 |
+
conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False),
|
103 |
+
NoiseInjection(),
|
104 |
+
NormLayer(out_planes*2), GLU()
|
105 |
+
)
|
106 |
+
return block
|
107 |
+
|
108 |
+
|
109 |
+
class UpBlockBigCond(nn.Module):
|
110 |
+
def __init__(self, in_planes, out_planes, z_dim):
|
111 |
+
super().__init__()
|
112 |
+
self.in_planes = in_planes
|
113 |
+
self.out_planes = out_planes
|
114 |
+
self.up = nn.Upsample(scale_factor=2, mode='nearest')
|
115 |
+
self.conv1 = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False)
|
116 |
+
self.conv2 = conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False)
|
117 |
+
|
118 |
+
which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim)
|
119 |
+
self.bn1 = which_bn(2*out_planes)
|
120 |
+
self.bn2 = which_bn(2*out_planes)
|
121 |
+
self.act = GLU()
|
122 |
+
self.noise = NoiseInjection()
|
123 |
+
|
124 |
+
def forward(self, x, c):
|
125 |
+
# block 1
|
126 |
+
x = self.up(x)
|
127 |
+
x = self.conv1(x)
|
128 |
+
x = self.noise(x)
|
129 |
+
x = self.bn1(x, c)
|
130 |
+
x = self.act(x)
|
131 |
+
|
132 |
+
# block 2
|
133 |
+
x = self.conv2(x)
|
134 |
+
x = self.noise(x)
|
135 |
+
x = self.bn2(x, c)
|
136 |
+
x = self.act(x)
|
137 |
+
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class SEBlock(nn.Module):
|
142 |
+
def __init__(self, ch_in, ch_out):
|
143 |
+
super().__init__()
|
144 |
+
self.main = nn.Sequential(
|
145 |
+
nn.AdaptiveAvgPool2d(4),
|
146 |
+
conv2d(ch_in, ch_out, 4, 1, 0, bias=False),
|
147 |
+
Swish(),
|
148 |
+
conv2d(ch_out, ch_out, 1, 1, 0, bias=False),
|
149 |
+
nn.Sigmoid(),
|
150 |
+
)
|
151 |
+
|
152 |
+
def forward(self, feat_small, feat_big):
|
153 |
+
return feat_big * self.main(feat_small)
|
154 |
+
|
155 |
+
|
156 |
+
### Downblocks
|
157 |
+
|
158 |
+
|
159 |
+
class SeparableConv2d(nn.Module):
|
160 |
+
def __init__(self, in_channels, out_channels, kernel_size, bias=False):
|
161 |
+
super(SeparableConv2d, self).__init__()
|
162 |
+
self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size,
|
163 |
+
groups=in_channels, bias=bias, padding=1)
|
164 |
+
self.pointwise = conv2d(in_channels, out_channels,
|
165 |
+
kernel_size=1, bias=bias)
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
out = self.depthwise(x)
|
169 |
+
out = self.pointwise(out)
|
170 |
+
return out
|
171 |
+
|
172 |
+
|
173 |
+
class DownBlock(nn.Module):
|
174 |
+
def __init__(self, in_planes, out_planes, separable=False):
|
175 |
+
super().__init__()
|
176 |
+
if not separable:
|
177 |
+
self.main = nn.Sequential(
|
178 |
+
conv2d(in_planes, out_planes, 4, 2, 1),
|
179 |
+
NormLayer(out_planes),
|
180 |
+
nn.LeakyReLU(0.2, inplace=True),
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
self.main = nn.Sequential(
|
184 |
+
SeparableConv2d(in_planes, out_planes, 3),
|
185 |
+
NormLayer(out_planes),
|
186 |
+
nn.LeakyReLU(0.2, inplace=True),
|
187 |
+
nn.AvgPool2d(2, 2),
|
188 |
+
)
|
189 |
+
|
190 |
+
def forward(self, feat):
|
191 |
+
return self.main(feat)
|
192 |
+
|
193 |
+
|
194 |
+
class DownBlockPatch(nn.Module):
|
195 |
+
def __init__(self, in_planes, out_planes, separable=False):
|
196 |
+
super().__init__()
|
197 |
+
self.main = nn.Sequential(
|
198 |
+
DownBlock(in_planes, out_planes, separable),
|
199 |
+
conv2d(out_planes, out_planes, 1, 1, 0, bias=False),
|
200 |
+
NormLayer(out_planes),
|
201 |
+
nn.LeakyReLU(0.2, inplace=True),
|
202 |
+
)
|
203 |
+
|
204 |
+
def forward(self, feat):
|
205 |
+
return self.main(feat)
|
206 |
+
|
207 |
+
|
208 |
+
### CSM
|
209 |
+
|
210 |
+
|
211 |
+
class ResidualConvUnit(nn.Module):
|
212 |
+
def __init__(self, cin, activation, bn):
|
213 |
+
super().__init__()
|
214 |
+
self.conv = nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=True)
|
215 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
216 |
+
|
217 |
+
def forward(self, x):
|
218 |
+
return self.skip_add.add(self.conv(x), x)
|
219 |
+
|
220 |
+
|
221 |
+
class FeatureFusionBlock(nn.Module):
|
222 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, lowest=False):
|
223 |
+
super().__init__()
|
224 |
+
|
225 |
+
self.deconv = deconv
|
226 |
+
self.align_corners = align_corners
|
227 |
+
|
228 |
+
self.expand = expand
|
229 |
+
out_features = features
|
230 |
+
if self.expand==True:
|
231 |
+
out_features = features//2
|
232 |
+
|
233 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
234 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
235 |
+
|
236 |
+
def forward(self, *xs):
|
237 |
+
output = xs[0]
|
238 |
+
|
239 |
+
if len(xs) == 2:
|
240 |
+
output = self.skip_add.add(output, xs[1])
|
241 |
+
|
242 |
+
output = nn.functional.interpolate(
|
243 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
244 |
+
)
|
245 |
+
|
246 |
+
output = self.out_conv(output)
|
247 |
+
|
248 |
+
return output
|
249 |
+
|
250 |
+
|
251 |
+
### Misc
|
252 |
+
|
253 |
+
|
254 |
+
class NoiseInjection(nn.Module):
|
255 |
+
def __init__(self):
|
256 |
+
super().__init__()
|
257 |
+
self.weight = nn.Parameter(torch.zeros(1), requires_grad=True)
|
258 |
+
|
259 |
+
def forward(self, feat, noise=None):
|
260 |
+
if noise is None:
|
261 |
+
batch, _, height, width = feat.shape
|
262 |
+
noise = torch.randn(batch, 1, height, width).to(feat.device)
|
263 |
+
|
264 |
+
return feat + self.weight * noise
|
265 |
+
|
266 |
+
|
267 |
+
class CCBN(nn.Module):
|
268 |
+
''' conditional batchnorm '''
|
269 |
+
def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1):
|
270 |
+
super().__init__()
|
271 |
+
self.output_size, self.input_size = output_size, input_size
|
272 |
+
|
273 |
+
# Prepare gain and bias layers
|
274 |
+
self.gain = which_linear(input_size, output_size)
|
275 |
+
self.bias = which_linear(input_size, output_size)
|
276 |
+
|
277 |
+
# epsilon to avoid dividing by 0
|
278 |
+
self.eps = eps
|
279 |
+
# Momentum
|
280 |
+
self.momentum = momentum
|
281 |
+
|
282 |
+
self.register_buffer('stored_mean', torch.zeros(output_size))
|
283 |
+
self.register_buffer('stored_var', torch.ones(output_size))
|
284 |
+
|
285 |
+
def forward(self, x, y):
|
286 |
+
# Calculate class-conditional gains and biases
|
287 |
+
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1)
|
288 |
+
bias = self.bias(y).view(y.size(0), -1, 1, 1)
|
289 |
+
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None,
|
290 |
+
self.training, 0.1, self.eps)
|
291 |
+
return out * gain + bias
|
292 |
+
|
293 |
+
|
294 |
+
class Interpolate(nn.Module):
|
295 |
+
"""Interpolation module."""
|
296 |
+
|
297 |
+
def __init__(self, size, mode='bilinear', align_corners=False):
|
298 |
+
"""Init.
|
299 |
+
Args:
|
300 |
+
scale_factor (float): scaling
|
301 |
+
mode (str): interpolation mode
|
302 |
+
"""
|
303 |
+
super(Interpolate, self).__init__()
|
304 |
+
|
305 |
+
self.interp = nn.functional.interpolate
|
306 |
+
self.size = size
|
307 |
+
self.mode = mode
|
308 |
+
self.align_corners = align_corners
|
309 |
+
|
310 |
+
def forward(self, x):
|
311 |
+
"""Forward pass.
|
312 |
+
Args:
|
313 |
+
x (tensor): input
|
314 |
+
Returns:
|
315 |
+
tensor: interpolated data
|
316 |
+
"""
|
317 |
+
|
318 |
+
x = self.interp(
|
319 |
+
x,
|
320 |
+
size=self.size,
|
321 |
+
mode=self.mode,
|
322 |
+
align_corners=self.align_corners,
|
323 |
+
)
|
324 |
+
|
325 |
+
return x
|
image_generator.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Generate images using pretrained network pickle."""
|
10 |
+
|
11 |
+
from ast import parse
|
12 |
+
import os
|
13 |
+
from pyexpat import model
|
14 |
+
import re
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
import numpy as np
|
17 |
+
import PIL.Image
|
18 |
+
import torch
|
19 |
+
from networks_fastgan import MyGenerator
|
20 |
+
import random
|
21 |
+
#----------------------------------------------------------------------------
|
22 |
+
|
23 |
+
def parse_range(s: Union[str, List]) -> List[int]:
|
24 |
+
'''Parse a comma separated list of numbers or ranges and return a list of ints.
|
25 |
+
|
26 |
+
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
|
27 |
+
'''
|
28 |
+
if isinstance(s, list): return s
|
29 |
+
ranges = []
|
30 |
+
range_re = re.compile(r'^(\d+)-(\d+)$')
|
31 |
+
for p in s.split(','):
|
32 |
+
m = range_re.match(p)
|
33 |
+
if m:
|
34 |
+
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
|
35 |
+
else:
|
36 |
+
ranges.append(int(p))
|
37 |
+
return ranges
|
38 |
+
|
39 |
+
#----------------------------------------------------------------------------
|
40 |
+
|
41 |
+
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
|
42 |
+
'''Parse a floating point 2-vector of syntax 'a,b'.
|
43 |
+
|
44 |
+
Example:
|
45 |
+
'0,1' returns (0,1)
|
46 |
+
'''
|
47 |
+
if isinstance(s, tuple): return s
|
48 |
+
parts = s.split(',')
|
49 |
+
if len(parts) == 2:
|
50 |
+
return (float(parts[0]), float(parts[1]))
|
51 |
+
raise ValueError(f'cannot parse 2-vector {s}')
|
52 |
+
|
53 |
+
#----------------------------------------------------------------------------
|
54 |
+
|
55 |
+
def make_transform(translate: Tuple[float,float], angle: float):
|
56 |
+
m = np.eye(3)
|
57 |
+
s = np.sin(angle/360.0*np.pi*2)
|
58 |
+
c = np.cos(angle/360.0*np.pi*2)
|
59 |
+
m[0][0] = c
|
60 |
+
m[0][1] = s
|
61 |
+
m[0][2] = translate[0]
|
62 |
+
m[1][0] = -s
|
63 |
+
m[1][1] = c
|
64 |
+
m[1][2] = translate[1]
|
65 |
+
return m
|
66 |
+
|
67 |
+
#----------------------------------------------------------------------------
|
68 |
+
|
69 |
+
def generate_images(
|
70 |
+
model_path,
|
71 |
+
seeds = "10-12",
|
72 |
+
truncation_psi = 1.0,
|
73 |
+
noise_mode = "const",
|
74 |
+
outdir = "out",
|
75 |
+
translate = "0,0",
|
76 |
+
rotate = 0,
|
77 |
+
number_of_images = 16
|
78 |
+
):
|
79 |
+
model_owner = "huggan"
|
80 |
+
#inputs = gr.inputs.Radio(["Abstract Expressionism", "Impressionism", "Cubism", "Minimalism", "Pop Art", "Color Field", "Hana Hanak houses"])
|
81 |
+
model_path_dict = {
|
82 |
+
'Impressionism' : 'projected_gan_impressionism',
|
83 |
+
'Cubism' : 'projected_gan_cubism',
|
84 |
+
'Abstract Expressionism' : 'projected_gan_abstract_expressionism',
|
85 |
+
'Pop Art' : 'projected_gan_popart',
|
86 |
+
'Minimalism' : 'projected_gan_minimalism',
|
87 |
+
'Color Field' : 'projected_gan_color_field',
|
88 |
+
'Hana Hanak houses' : 'projected_gan_Hana_Hanak',
|
89 |
+
'Hana Hanak houses - abstract expressionism' : 'projected_gan_abstract_expressionism_hana',
|
90 |
+
'Hana Hanak houses - color field' : 'projected_gan_color_field_hana',
|
91 |
+
|
92 |
+
}
|
93 |
+
|
94 |
+
model_path = model_owner + "/" + model_path_dict[model_path]
|
95 |
+
print(model_path)
|
96 |
+
print(seeds)
|
97 |
+
seeds=[random.randint(1,230)]
|
98 |
+
#seeds =f"{seeds}-{seeds+number_of_images-1}"
|
99 |
+
#seeds = parse_range(seeds)
|
100 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
101 |
+
G = MyGenerator.from_pretrained(model_path)
|
102 |
+
os.makedirs(outdir, exist_ok=True)
|
103 |
+
# Labels.
|
104 |
+
label = torch.zeros([1, G.c_dim], device=device)
|
105 |
+
"""
|
106 |
+
if G.c_dim != 0:
|
107 |
+
if class_idx is None:
|
108 |
+
raise click.ClickException('Must specify class label with --class when using a conditional network')
|
109 |
+
label[:, class_idx] = 1
|
110 |
+
else:
|
111 |
+
if class_idx is not None:
|
112 |
+
print ('warn: --class=lbl ignored when running on an unconditional network')
|
113 |
+
"""
|
114 |
+
|
115 |
+
print(f"z dimenzija mi je: {G.z_dim}")
|
116 |
+
# Generate images.
|
117 |
+
|
118 |
+
#imgs_row = np.array()
|
119 |
+
#imgs_complete = np.array()
|
120 |
+
for seed_idx, seed in enumerate(seeds):
|
121 |
+
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
|
122 |
+
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device).float()
|
123 |
+
# Construct an inverse rotation/translation matrix and pass to the generator. The
|
124 |
+
# generator expects this matrix as an inverse to avoid potentially failing numerical
|
125 |
+
# operations in the network.
|
126 |
+
if hasattr(G.synthesis, 'input'):
|
127 |
+
m = make_transform(translate, rotate)
|
128 |
+
m = np.linalg.inv(m)
|
129 |
+
G.synthesis.input.transform.copy_(torch.from_numpy(m))
|
130 |
+
|
131 |
+
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
|
132 |
+
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
133 |
+
print(seed_idx)
|
134 |
+
#first image
|
135 |
+
if seed_idx == 0:
|
136 |
+
imgs_row = img[0].cpu().numpy()
|
137 |
+
else:
|
138 |
+
imgs_row = np.hstack((imgs_row, img[0].cpu().numpy()))
|
139 |
+
#img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
|
140 |
+
#PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png')
|
141 |
+
#napravi vsplit i toe to ka
|
142 |
+
imgs_complete = np.vstack(np.hsplit(imgs_row, 4))
|
143 |
+
#cv2.imshow("lalaxd", imgs_complete)
|
144 |
+
#cv2.waitKey()
|
145 |
+
return PIL.Image.fromarray(imgs_complete, 'RGB')
|
146 |
+
|
147 |
+
|
148 |
+
#----------------------------------------------------------------------------
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
generate_images() # pylint: disable=no-value-for-parameter
|
152 |
+
|
153 |
+
#----------------------------------------------------------------------------
|
networks_fastgan.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# original implementation: https://github.com/odegeasslbc/FastGAN-pytorch/blob/main/models.py
|
2 |
+
#
|
3 |
+
# modified by Axel Sauer for "Projected GANs Converge Faster"
|
4 |
+
#
|
5 |
+
import torch.nn as nn
|
6 |
+
from blocks import (InitLayer, UpBlockBig, UpBlockBigCond, UpBlockSmall, UpBlockSmallCond, SEBlock, conv2d)
|
7 |
+
from huggingface_hub import PyTorchModelHubMixin
|
8 |
+
|
9 |
+
def normalize_second_moment(x, dim=1, eps=1e-8):
|
10 |
+
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
|
11 |
+
|
12 |
+
|
13 |
+
class DummyMapping(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
def forward(self, z, c, **kwargs):
|
18 |
+
return z.unsqueeze(1) # to fit the StyleGAN API
|
19 |
+
|
20 |
+
|
21 |
+
class FastganSynthesis(nn.Module):
|
22 |
+
def __init__(self, ngf=128, z_dim=256, nc=3, img_resolution=256, lite=False):
|
23 |
+
super().__init__()
|
24 |
+
self.img_resolution = img_resolution
|
25 |
+
self.z_dim = z_dim
|
26 |
+
|
27 |
+
# channel multiplier
|
28 |
+
nfc_multi = {2: 16, 4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5,
|
29 |
+
512:0.25, 1024:0.125}
|
30 |
+
nfc = {}
|
31 |
+
for k, v in nfc_multi.items():
|
32 |
+
nfc[k] = int(v*ngf)
|
33 |
+
|
34 |
+
# layers
|
35 |
+
self.init = InitLayer(z_dim, channel=nfc[2], sz=4)
|
36 |
+
|
37 |
+
UpBlock = UpBlockSmall if lite else UpBlockBig
|
38 |
+
|
39 |
+
self.feat_8 = UpBlock(nfc[4], nfc[8])
|
40 |
+
self.feat_16 = UpBlock(nfc[8], nfc[16])
|
41 |
+
self.feat_32 = UpBlock(nfc[16], nfc[32])
|
42 |
+
self.feat_64 = UpBlock(nfc[32], nfc[64])
|
43 |
+
self.feat_128 = UpBlock(nfc[64], nfc[128])
|
44 |
+
self.feat_256 = UpBlock(nfc[128], nfc[256])
|
45 |
+
|
46 |
+
self.se_64 = SEBlock(nfc[4], nfc[64])
|
47 |
+
self.se_128 = SEBlock(nfc[8], nfc[128])
|
48 |
+
self.se_256 = SEBlock(nfc[16], nfc[256])
|
49 |
+
|
50 |
+
self.to_big = conv2d(nfc[img_resolution], nc, 3, 1, 1, bias=True)
|
51 |
+
|
52 |
+
if img_resolution > 256:
|
53 |
+
self.feat_512 = UpBlock(nfc[256], nfc[512])
|
54 |
+
self.se_512 = SEBlock(nfc[32], nfc[512])
|
55 |
+
if img_resolution > 512:
|
56 |
+
self.feat_1024 = UpBlock(nfc[512], nfc[1024])
|
57 |
+
|
58 |
+
def forward(self, input, c, **kwargs):
|
59 |
+
# map noise to hypersphere as in "Progressive Growing of GANS"
|
60 |
+
input = normalize_second_moment(input[:, 0])
|
61 |
+
|
62 |
+
feat_4 = self.init(input)
|
63 |
+
feat_8 = self.feat_8(feat_4)
|
64 |
+
feat_16 = self.feat_16(feat_8)
|
65 |
+
feat_32 = self.feat_32(feat_16)
|
66 |
+
feat_64 = self.se_64(feat_4, self.feat_64(feat_32))
|
67 |
+
feat_128 = self.se_128(feat_8, self.feat_128(feat_64))
|
68 |
+
|
69 |
+
if self.img_resolution >= 128:
|
70 |
+
feat_last = feat_128
|
71 |
+
|
72 |
+
if self.img_resolution >= 256:
|
73 |
+
feat_last = self.se_256(feat_16, self.feat_256(feat_last))
|
74 |
+
|
75 |
+
if self.img_resolution >= 512:
|
76 |
+
feat_last = self.se_512(feat_32, self.feat_512(feat_last))
|
77 |
+
|
78 |
+
if self.img_resolution >= 1024:
|
79 |
+
feat_last = self.feat_1024(feat_last)
|
80 |
+
|
81 |
+
return self.to_big(feat_last)
|
82 |
+
|
83 |
+
|
84 |
+
class FastganSynthesisCond(nn.Module):
|
85 |
+
def __init__(self, ngf=64, z_dim=256, nc=3, img_resolution=256, num_classes=1000, lite=False):
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
self.z_dim = z_dim
|
89 |
+
nfc_multi = {2: 16, 4:16, 8:8, 16:4, 32:2, 64:2, 128:1, 256:0.5,
|
90 |
+
512:0.25, 1024:0.125, 2048:0.125}
|
91 |
+
nfc = {}
|
92 |
+
for k, v in nfc_multi.items():
|
93 |
+
nfc[k] = int(v*ngf)
|
94 |
+
|
95 |
+
self.img_resolution = img_resolution
|
96 |
+
|
97 |
+
self.init = InitLayer(z_dim, channel=nfc[2], sz=4)
|
98 |
+
|
99 |
+
UpBlock = UpBlockSmallCond if lite else UpBlockBigCond
|
100 |
+
|
101 |
+
self.feat_8 = UpBlock(nfc[4], nfc[8], z_dim)
|
102 |
+
self.feat_16 = UpBlock(nfc[8], nfc[16], z_dim)
|
103 |
+
self.feat_32 = UpBlock(nfc[16], nfc[32], z_dim)
|
104 |
+
self.feat_64 = UpBlock(nfc[32], nfc[64], z_dim)
|
105 |
+
self.feat_128 = UpBlock(nfc[64], nfc[128], z_dim)
|
106 |
+
self.feat_256 = UpBlock(nfc[128], nfc[256], z_dim)
|
107 |
+
|
108 |
+
self.se_64 = SEBlock(nfc[4], nfc[64])
|
109 |
+
self.se_128 = SEBlock(nfc[8], nfc[128])
|
110 |
+
self.se_256 = SEBlock(nfc[16], nfc[256])
|
111 |
+
|
112 |
+
self.to_big = conv2d(nfc[img_resolution], nc, 3, 1, 1, bias=True)
|
113 |
+
|
114 |
+
if img_resolution > 256:
|
115 |
+
self.feat_512 = UpBlock(nfc[256], nfc[512])
|
116 |
+
self.se_512 = SEBlock(nfc[32], nfc[512])
|
117 |
+
if img_resolution > 512:
|
118 |
+
self.feat_1024 = UpBlock(nfc[512], nfc[1024])
|
119 |
+
|
120 |
+
self.embed = nn.Embedding(num_classes, z_dim)
|
121 |
+
|
122 |
+
def forward(self, input, c, update_emas=False):
|
123 |
+
c = self.embed(c.argmax(1))
|
124 |
+
|
125 |
+
# map noise to hypersphere as in "Progressive Growing of GANS"
|
126 |
+
input = normalize_second_moment(input[:, 0])
|
127 |
+
|
128 |
+
feat_4 = self.init(input)
|
129 |
+
feat_8 = self.feat_8(feat_4, c)
|
130 |
+
feat_16 = self.feat_16(feat_8, c)
|
131 |
+
feat_32 = self.feat_32(feat_16, c)
|
132 |
+
feat_64 = self.se_64(feat_4, self.feat_64(feat_32, c))
|
133 |
+
feat_128 = self.se_128(feat_8, self.feat_128(feat_64, c))
|
134 |
+
|
135 |
+
if self.img_resolution >= 128:
|
136 |
+
feat_last = feat_128
|
137 |
+
|
138 |
+
if self.img_resolution >= 256:
|
139 |
+
feat_last = self.se_256(feat_16, self.feat_256(feat_last, c))
|
140 |
+
|
141 |
+
if self.img_resolution >= 512:
|
142 |
+
feat_last = self.se_512(feat_32, self.feat_512(feat_last, c))
|
143 |
+
|
144 |
+
if self.img_resolution >= 1024:
|
145 |
+
feat_last = self.feat_1024(feat_last, c)
|
146 |
+
|
147 |
+
return self.to_big(feat_last)
|
148 |
+
|
149 |
+
|
150 |
+
class MyGenerator(nn.Module, PyTorchModelHubMixin):
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
z_dim=256,
|
154 |
+
c_dim=0,
|
155 |
+
w_dim=0,
|
156 |
+
img_resolution=256,
|
157 |
+
img_channels=3,
|
158 |
+
ngf=128,
|
159 |
+
cond=0,
|
160 |
+
mapping_kwargs={},
|
161 |
+
synthesis_kwargs={}
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
#self.config = kwargs.pop("config", None)
|
165 |
+
self.z_dim = z_dim
|
166 |
+
self.c_dim = c_dim
|
167 |
+
self.w_dim = w_dim
|
168 |
+
self.img_resolution = img_resolution
|
169 |
+
self.img_channels = img_channels
|
170 |
+
|
171 |
+
# Mapping and Synthesis Networks
|
172 |
+
self.mapping = DummyMapping() # to fit the StyleGAN API
|
173 |
+
Synthesis = FastganSynthesisCond if cond else FastganSynthesis
|
174 |
+
self.synthesis = Synthesis(ngf=ngf, z_dim=z_dim, nc=img_channels, img_resolution=img_resolution, **synthesis_kwargs)
|
175 |
+
|
176 |
+
def forward(self, z, c, **kwargs):
|
177 |
+
w = self.mapping(z, c)
|
178 |
+
img = self.synthesis(w, c)
|
179 |
+
return img
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torchvision
|
3 |
+
matplotlib
|
4 |
+
torch
|