Spaces:
Running
Running
from os import CLD_CONTINUED | |
import streamlit as st | |
from streamlit.elements.altair import generate_chart | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import pipeline | |
def load_model(): | |
model_ckpt = "flax-community/gpt2-rap-lyric-generator" | |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt,from_flax=True) | |
model = AutoModelForCausalLM.from_pretrained(model_ckpt,from_flax=True) | |
return tokenizer, model | |
def load_rappers(): | |
text_file = open("rappers.txt") | |
rappers = text_file.readlines() | |
rappers = [name[:-1] for name in rappers] | |
rappers.sort() | |
return rappers | |
title = st.title("Loading model") | |
tokenizer, model = load_model() | |
text_generation = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
title.title("Rap lyrics generator") | |
#artist = st.text_input("Enter the artist", "Wu-Tang Clan") | |
list_of_rappers = load_rappers() | |
artist = st.selectbox("Choose your rapper", tuple(list_of_rappers), index = len(list_of_rappers)-1) | |
song_name = st.text_input("Enter the desired song name", "Sadboys") | |
if st.button("Generate lyrics", help="The lyrics generations lasts for about a minute"): | |
st.title(f"{artist}: {song_name}") | |
prefix_text = f"<BOS>{song_name} [Verse 1:{artist}]" | |
generated_song = text_generation(prefix_text, max_length=750, do_sample=True)[0] | |
for count, line in enumerate(generated_song['generated_text'].split("\n")): | |
if"<EOS>" in line: | |
break | |
if count == 0: | |
st.markdown(f"**{line[line.find('['):]}**") | |
continue | |
if "<BOS>" in line: | |
st.write(line[5:]) | |
continue | |
if line.startswith("["): | |
st.markdown(f"**{line}**") | |
continue | |
st.write(line) |