Upload SUPIR_model.py
Browse files- SUPIR/models/SUPIR_model.py +195 -0
SUPIR/models/SUPIR_model.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from sgm.models.diffusion import DiffusionEngine
|
| 3 |
+
from sgm.util import instantiate_from_config
|
| 4 |
+
import copy
|
| 5 |
+
from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 6 |
+
import random
|
| 7 |
+
from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
|
| 8 |
+
from pytorch_lightning import seed_everything
|
| 9 |
+
from torch.nn.functional import interpolate
|
| 10 |
+
from SUPIR.utils.tilevae import VAEHook
|
| 11 |
+
|
| 12 |
+
class SUPIRModel(DiffusionEngine):
|
| 13 |
+
def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
|
| 14 |
+
super().__init__(*args, **kwargs)
|
| 15 |
+
control_model = instantiate_from_config(control_stage_config)
|
| 16 |
+
self.model.load_control_model(control_model)
|
| 17 |
+
self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
|
| 18 |
+
self.sampler_config = kwargs['sampler_config']
|
| 19 |
+
|
| 20 |
+
assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
|
| 21 |
+
if ae_dtype == 'fp32':
|
| 22 |
+
ae_dtype = torch.float32
|
| 23 |
+
elif ae_dtype == 'fp16':
|
| 24 |
+
raise RuntimeError('fp16 cause NaN in AE')
|
| 25 |
+
elif ae_dtype == 'bf16':
|
| 26 |
+
ae_dtype = torch.bfloat16
|
| 27 |
+
|
| 28 |
+
if diffusion_dtype == 'fp32':
|
| 29 |
+
diffusion_dtype = torch.float32
|
| 30 |
+
elif diffusion_dtype == 'fp16':
|
| 31 |
+
diffusion_dtype = torch.float16
|
| 32 |
+
elif diffusion_dtype == 'bf16':
|
| 33 |
+
diffusion_dtype = torch.bfloat16
|
| 34 |
+
|
| 35 |
+
self.ae_dtype = ae_dtype
|
| 36 |
+
self.model.dtype = diffusion_dtype
|
| 37 |
+
|
| 38 |
+
self.p_p = p_p
|
| 39 |
+
self.n_p = n_p
|
| 40 |
+
|
| 41 |
+
@torch.no_grad()
|
| 42 |
+
def encode_first_stage(self, x):
|
| 43 |
+
with torch.autocast("cuda", dtype=self.ae_dtype):
|
| 44 |
+
z = self.first_stage_model.encode(x)
|
| 45 |
+
z = self.scale_factor * z
|
| 46 |
+
return z
|
| 47 |
+
|
| 48 |
+
@torch.no_grad()
|
| 49 |
+
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
|
| 50 |
+
with torch.autocast("cuda", dtype=self.ae_dtype):
|
| 51 |
+
if is_stage1:
|
| 52 |
+
h = self.first_stage_model.denoise_encoder_s1(x)
|
| 53 |
+
else:
|
| 54 |
+
h = self.first_stage_model.denoise_encoder(x)
|
| 55 |
+
moments = self.first_stage_model.quant_conv(h)
|
| 56 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 57 |
+
if use_sample:
|
| 58 |
+
z = posterior.sample()
|
| 59 |
+
else:
|
| 60 |
+
z = posterior.mode()
|
| 61 |
+
z = self.scale_factor * z
|
| 62 |
+
return z
|
| 63 |
+
|
| 64 |
+
@torch.no_grad()
|
| 65 |
+
def decode_first_stage(self, z):
|
| 66 |
+
z = 1.0 / self.scale_factor * z
|
| 67 |
+
with torch.autocast("cuda", dtype=self.ae_dtype):
|
| 68 |
+
out = self.first_stage_model.decode(z)
|
| 69 |
+
return out.float()
|
| 70 |
+
|
| 71 |
+
@torch.no_grad()
|
| 72 |
+
def batchify_denoise(self, x, is_stage1=False):
|
| 73 |
+
'''
|
| 74 |
+
[N, C, H, W], [-1, 1], RGB
|
| 75 |
+
'''
|
| 76 |
+
x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
|
| 77 |
+
return self.decode_first_stage(x)
|
| 78 |
+
|
| 79 |
+
@torch.no_grad()
|
| 80 |
+
def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1,
|
| 81 |
+
num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False,
|
| 82 |
+
cfg_scale_start=1.0, control_scale_start=0.0, **kwargs):
|
| 83 |
+
'''
|
| 84 |
+
[N, C], [-1, 1], RGB
|
| 85 |
+
'''
|
| 86 |
+
assert len(x) == len(p)
|
| 87 |
+
assert color_fix_type in ['Wavelet', 'AdaIn', 'None']
|
| 88 |
+
|
| 89 |
+
N = len(x)
|
| 90 |
+
if num_samples > 1:
|
| 91 |
+
assert N == 1
|
| 92 |
+
N = num_samples
|
| 93 |
+
x = x.repeat(N, 1, 1, 1)
|
| 94 |
+
p = p * N
|
| 95 |
+
|
| 96 |
+
if p_p == 'default':
|
| 97 |
+
p_p = self.p_p
|
| 98 |
+
if n_p == 'default':
|
| 99 |
+
n_p = self.n_p
|
| 100 |
+
|
| 101 |
+
self.sampler_config.params.num_steps = num_steps
|
| 102 |
+
if use_linear_CFG:
|
| 103 |
+
self.sampler_config.params.guider_config.params.scale_min = cfg_scale
|
| 104 |
+
self.sampler_config.params.guider_config.params.scale = cfg_scale_start
|
| 105 |
+
else:
|
| 106 |
+
self.sampler_config.params.guider_config.params.scale_min = cfg_scale
|
| 107 |
+
self.sampler_config.params.guider_config.params.scale = cfg_scale
|
| 108 |
+
self.sampler_config.params.restore_cfg = restoration_scale
|
| 109 |
+
self.sampler_config.params.s_churn = s_churn
|
| 110 |
+
self.sampler_config.params.s_noise = s_noise
|
| 111 |
+
self.sampler = instantiate_from_config(self.sampler_config)
|
| 112 |
+
|
| 113 |
+
if seed == -1:
|
| 114 |
+
seed = random.randint(0, 65535)
|
| 115 |
+
seed_everything(seed)
|
| 116 |
+
|
| 117 |
+
_z = self.encode_first_stage_with_denoise(x, use_sample=False)
|
| 118 |
+
x_stage1 = self.decode_first_stage(_z)
|
| 119 |
+
z_stage1 = self.encode_first_stage(x_stage1)
|
| 120 |
+
|
| 121 |
+
c, uc = self.prepare_condition(_z, p, p_p, n_p, N)
|
| 122 |
+
|
| 123 |
+
denoiser = lambda input, sigma, c, control_scale: self.denoiser(
|
| 124 |
+
self.model, input, sigma, c, control_scale, **kwargs
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
noised_z = torch.randn_like(_z).to(_z.device)
|
| 128 |
+
|
| 129 |
+
_samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale,
|
| 130 |
+
use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
|
| 131 |
+
samples = self.decode_first_stage(_samples)
|
| 132 |
+
if color_fix_type == 'Wavelet':
|
| 133 |
+
samples = wavelet_reconstruction(samples, x_stage1)
|
| 134 |
+
elif color_fix_type == 'AdaIn':
|
| 135 |
+
samples = adaptive_instance_normalization(samples, x_stage1)
|
| 136 |
+
return samples
|
| 137 |
+
|
| 138 |
+
def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64):
|
| 139 |
+
self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward
|
| 140 |
+
self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward
|
| 141 |
+
self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward
|
| 142 |
+
self.first_stage_model.denoise_encoder.forward = VAEHook(
|
| 143 |
+
self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
|
| 144 |
+
fast_encoder=False, color_fix=False, to_gpu=True)
|
| 145 |
+
self.first_stage_model.encoder.forward = VAEHook(
|
| 146 |
+
self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
|
| 147 |
+
fast_encoder=False, color_fix=False, to_gpu=True)
|
| 148 |
+
self.first_stage_model.decoder.forward = VAEHook(
|
| 149 |
+
self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False,
|
| 150 |
+
fast_encoder=False, color_fix=False, to_gpu=True)
|
| 151 |
+
|
| 152 |
+
def prepare_condition(self, _z, p, p_p, n_p, N):
|
| 153 |
+
batch = {}
|
| 154 |
+
batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
|
| 155 |
+
batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device)
|
| 156 |
+
batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
|
| 157 |
+
batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device)
|
| 158 |
+
batch['control'] = _z
|
| 159 |
+
|
| 160 |
+
batch_uc = copy.deepcopy(batch)
|
| 161 |
+
batch_uc['txt'] = [n_p for _ in p]
|
| 162 |
+
|
| 163 |
+
if not isinstance(p[0], list):
|
| 164 |
+
batch['txt'] = [''.join([_p, p_p]) for _p in p]
|
| 165 |
+
with torch.cuda.amp.autocast(dtype=self.ae_dtype):
|
| 166 |
+
c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
|
| 167 |
+
else:
|
| 168 |
+
assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.'
|
| 169 |
+
p_tiles = p[0]
|
| 170 |
+
c = []
|
| 171 |
+
for i, p_tile in enumerate(p_tiles):
|
| 172 |
+
batch['txt'] = [''.join([p_tile, p_p])]
|
| 173 |
+
with torch.cuda.amp.autocast(dtype=self.ae_dtype):
|
| 174 |
+
if i == 0:
|
| 175 |
+
_c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
|
| 176 |
+
else:
|
| 177 |
+
_c, _ = self.conditioner.get_unconditional_conditioning(batch, None)
|
| 178 |
+
c.append(_c)
|
| 179 |
+
return c, uc
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
if __name__ == '__main__':
|
| 183 |
+
from SUPIR.util import create_model, load_state_dict
|
| 184 |
+
|
| 185 |
+
model = create_model('../../options/dev/SUPIR_paper_version.yaml')
|
| 186 |
+
|
| 187 |
+
SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors'
|
| 188 |
+
SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt'
|
| 189 |
+
model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False)
|
| 190 |
+
model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False)
|
| 191 |
+
model = model.cuda()
|
| 192 |
+
|
| 193 |
+
x = torch.randn(1, 3, 512, 512).cuda()
|
| 194 |
+
p = ['a professional, detailed, high-quality photo']
|
| 195 |
+
samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1)
|