|
import json
|
|
from typing import List, Optional, Union
|
|
|
|
|
|
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
|
from llamafactory.extras.constants import IGNORE_INDEX
|
|
from llamafactory.extras.misc import get_device_count
|
|
from llamafactory.extras.packages import is_vllm_available
|
|
from llamafactory.hparams import get_infer_args
|
|
from llamafactory.model import load_tokenizer
|
|
from pydantic import BaseModel
|
|
from vllm.sampling_params import GuidedDecodingParams
|
|
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
|
|
|
|
|
|
|
|
def vllm_infer(
|
|
inputs: Union[str, List[str]],
|
|
model_name_or_path: str,
|
|
adapter_name_or_path: Optional[str] = None,
|
|
dataset: str = "alpaca_en_demo",
|
|
dataset_dir: str = "data",
|
|
template: str = "default",
|
|
cutoff_len: int = 2048,
|
|
max_samples: Optional[int] = None,
|
|
vllm_config: str = "{}",
|
|
save_name: str = "generated_predictions.jsonl",
|
|
temperature: float = 0.95,
|
|
top_p: float = 0.7,
|
|
top_k: int = 50,
|
|
guided_decoding_class: Optional[type[BaseModel]] = None,
|
|
bad_words: Optional[List[str]] = None,
|
|
logprobs: Optional[int] = None,
|
|
max_new_tokens: int = 1024,
|
|
repetition_penalty: float = 1.0,
|
|
skip_special_tokens: bool = True,
|
|
seed: Optional[int] = None,
|
|
pipeline_parallel_size: int = 1,
|
|
image_max_pixels: int = 768 * 768,
|
|
image_min_pixels: int = 32 * 32,
|
|
):
|
|
r"""Perform batch generation using vLLM engine, which supports tensor parallelism."""
|
|
if pipeline_parallel_size > get_device_count():
|
|
raise ValueError("Pipeline parallel size should be smaller than the number of gpus.")
|
|
|
|
model_args, data_args, _, generating_args = get_infer_args(
|
|
dict(
|
|
model_name_or_path=model_name_or_path,
|
|
adapter_name_or_path=adapter_name_or_path,
|
|
dataset=dataset,
|
|
dataset_dir=dataset_dir,
|
|
template=template,
|
|
cutoff_len=cutoff_len,
|
|
max_samples=max_samples,
|
|
preprocessing_num_workers=16,
|
|
vllm_config=vllm_config,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
max_new_tokens=max_new_tokens,
|
|
repetition_penalty=repetition_penalty,
|
|
)
|
|
)
|
|
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
tokenizer = tokenizer_module["tokenizer"]
|
|
template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
|
|
template_obj.mm_plugin.expand_mm_tokens = False
|
|
|
|
if guided_decoding_class:
|
|
json_schema = guided_decoding_class.model_json_schema()
|
|
guided_decoding_params = GuidedDecodingParams(json=json_schema)
|
|
else:
|
|
guided_decoding_params = None
|
|
|
|
sampling_params = SamplingParams(
|
|
repetition_penalty=generating_args.repetition_penalty or 1.0,
|
|
temperature=generating_args.temperature,
|
|
top_p=generating_args.top_p or 1.0,
|
|
top_k=generating_args.top_k or -1,
|
|
stop_token_ids=template_obj.get_stop_token_ids(tokenizer),
|
|
max_tokens=generating_args.max_new_tokens,
|
|
skip_special_tokens=skip_special_tokens,
|
|
seed=seed,
|
|
guided_decoding=guided_decoding_params,
|
|
bad_words=bad_words,
|
|
)
|
|
if model_args.adapter_name_or_path is not None:
|
|
lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
|
else:
|
|
lora_request = None
|
|
|
|
engine_args = {
|
|
"model": model_args.model_name_or_path,
|
|
"trust_remote_code": True,
|
|
"dtype": model_args.infer_dtype,
|
|
"max_model_len": cutoff_len + max_new_tokens,
|
|
|
|
|
|
|
|
"disable_log_stats": True,
|
|
"enable_lora": model_args.adapter_name_or_path is not None,
|
|
"enable_prefix_caching": True,
|
|
"gpu_memory_utilization": 0.95,
|
|
|
|
|
|
}
|
|
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
|
|
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2, "audio": 2}
|
|
|
|
if isinstance(model_args.vllm_config, dict):
|
|
engine_args.update(model_args.vllm_config)
|
|
|
|
results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request)
|
|
return results
|
|
|