rwkv-v5-1b5-cpu / app.py
BlinkDL's picture
Update app.py
aabbe8e
raw
history blame
12.9 kB
import gradio as gr
import os, gc, copy, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1536
title = "RWKV-4-Raven-14B-v11x-Eng99%-Other1%-20230501-ctx8192"
os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *24 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")
def generate_prompt(instruction, input=None):
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Input:
{input}
# Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
{instruction}
# Response:
"""
def evaluate(
instruction,
input=None,
token_count=200,
temperature=1.0,
top_p=0.7,
presencePenalty = 0.1,
countPenalty = 0.1,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
ctx = generate_prompt(instruction, input)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
gc.collect()
torch.cuda.empty_cache()
yield out_str.strip()
examples = [
["Tell me about ravens.", "", 150, 1.2, 0.5, 0.4, 0.4],
["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.2, 0.5, 0.4, 0.4],
["Write a song about ravens.", "", 150, 1.2, 0.5, 0.4, 0.4],
["Explain the following metaphor: Life is like cats.", "", 150, 1.2, 0.5, 0.4, 0.4],
["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.2, 0.5, 0.4, 0.4],
["Generate a list of adjectives that describe a person as brave.", "", 150, 1.2, 0.5, 0.4, 0.4],
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.2, 0.5, 0.4, 0.4],
]
##########################################################################
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.
<|user|>: Hi <|bot|>, Would you like to chat with me for a while?
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
'''
def user(message, chatbot):
chatbot = chatbot or []
# print(f"User: {message}")
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
def chat(
prompt,
user,
bot,
chatbot,
history,
temperature=1.0,
top_p=0.8,
presence_penalty=0.1,
count_penalty=0.1,
):
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
alpha_frequency=float(count_penalty),
alpha_presence=float(presence_penalty),
token_ban=[], # ban the generation of some tokens
token_stop=[]) # stop generation whenever you see any token here
if not chatbot:
return chatbot, history
message = chatbot[-1][0]
message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
ctx = f"{user}: {message}\n\n{bot}:"
if not history:
prompt = prompt.replace("<|user|>", user.strip())
prompt = prompt.replace("<|bot|>", bot.strip())
prompt = prompt.strip()
prompt = f"\n{prompt}\n\n"
out, state = model.forward(pipeline.encode(prompt), None)
history = [state, None, []] # [state, state_pre, tokens]
# print("History reloaded.")
[state, _, all_tokens] = history
state_pre_0 = copy.deepcopy(state)
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)
state_pre_1 = copy.deepcopy(state) # For recovery
# print("Bot:", end='')
begin = len(all_tokens)
out_last = begin
out_str: str = ''
occurrence = {}
for i in range(300):
if i <= 0:
nl_bias = -float('inf')
elif i <= 30:
nl_bias = (i - 30) * 0.1
elif i <= 130:
nl_bias = 0
else:
nl_bias = (i - 130) * 0.25
out[187] += nl_bias
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
next_tokens = [token]
if token == 0:
next_tokens = pipeline.encode('\n\n')
all_tokens += next_tokens
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
out, state = model.forward(next_tokens, state)
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
# print(tmp, end='', flush=True)
out_last = begin + i + 1
out_str += tmp
chatbot[-1][1] = out_str.strip()
history = [state, all_tokens]
yield chatbot, history
out_str = pipeline.decode(all_tokens[begin:])
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')
if '\n\n' in out_str:
break
# State recovery
if f'{user}:' in out_str or f'{bot}:' in out_str:
idx_user = out_str.find(f'{user}:')
idx_user = len(out_str) if idx_user == -1 else idx_user
idx_bot = out_str.find(f'{bot}:')
idx_bot = len(out_str) if idx_bot == -1 else idx_bot
idx = min(idx_user, idx_bot)
if idx < len(out_str):
out_str = f" {out_str[:idx].strip()}\n\n"
tokens = pipeline.encode(out_str)
all_tokens = all_tokens[:begin] + tokens
out, state = model.forward(tokens, state_pre_1)
break
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
gc.collect()
torch.cuda.empty_cache()
chatbot[-1][1] = out_str.strip()
history = [state, state_pre_0, all_tokens]
yield chatbot, history
##########################################################################
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🐦Raven - {title}</h1>\n</div>")
with gr.Tab("Instruct mode"):
gr.Markdown(f"Raven is [RWKV 14B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}. Finetuned on alpaca, gpt4all, codealpaca and more. For best results, *** keep you prompt short and clear ***. <b>UPDATE: now with Chat (see above, as a tab)</b>.")
with gr.Row():
with gr.Column():
instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.")
input = gr.Textbox(lines=2, label="Input", placeholder="none")
token_count = gr.Slider(10, 200, label="Max Tokens", step=10, value=150)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
with gr.Tab("Chat (Experimental - Might be buggy - use ChatRWKV for reference)"):
gr.Markdown(f'''<b>*** The length of response is restricted in this demo. Use ChatRWKV for longer generations. ***</b> Say "go on" or "continue" can sometimes continue the response. If you'd like to edit the scenario, make sure to follow the exact same format: empty lines between (and only between) different speakers. Changes only take effect after you press [Clear]. <b>The default "Bob" & "Alice" names work the best.</b>''', label="Description")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
state = gr.State()
message = gr.Textbox(label="Message", value="Write me a python code to land on moon.")
with gr.Row():
send = gr.Button("Send", variant="primary")
alt = gr.Button("Alternative", variant="secondary")
clear = gr.Button("Clear", variant="secondary")
with gr.Column():
with gr.Row():
user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob")
bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice")
prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
chat_inputs = [
prompt,
user_name,
bot_name,
chatbot,
state,
temperature,
top_p,
presence_penalty,
count_penalty
]
chat_outputs = [chatbot, state]
message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs)
clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False)
demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False)