|
import os |
|
import gradio as gr |
|
from llama_cpp import Llama |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
os.environ["HUGGINGFACE_TOKEN"] = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
model_name_or_path = "TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF" |
|
model_basename = "openbuddy-llama2-13b-v11.1.Q2_K.gguf" |
|
|
|
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename, revision="main") |
|
llama = Llama(model_path) |
|
|
|
def predict(message, history): |
|
messages = [] |
|
for human_content, system_content in history: |
|
message_human = { |
|
"role": "user", |
|
"content": human_content + "\n", |
|
} |
|
message_system = { |
|
"role": "system", |
|
"content": system_content + "\n", |
|
} |
|
messages.append(message_human) |
|
messages.append(message_system) |
|
message_human = { |
|
"role": "user", |
|
"content": message + "\n", |
|
} |
|
messages.append(message_human) |
|
|
|
streamer = llama.create_chat_completion(messages, stream=True) |
|
|
|
partial_message = "" |
|
for msg in streamer: |
|
message = msg['choices'][0]['delta'] |
|
if 'content' in message: |
|
partial_message += message['content'] |
|
yield partial_message |
|
|
|
gr.ChatInterface(predict).launch(enable_queue=True) |
|
|