Cecilia / app.py
Cran-May's picture
Update app.py
bfb9c3f
raw
history blame
3.61 kB
import streamlit as st
from gradio_client import Client
from time import sleep
from ctransformers import AutoModelForCausalLM
# Constants
TITLE = "玉刚-常明"
DESCRIPTION = """
玉刚-常明 的部署,由SSFW NLPark项目支持
"""
# Initialize client
with st.sidebar:
# system_promptSide = st.text_input("Optional system prompt:")
temperatureSide = st.slider("情感/Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
max_new_tokensSide = st.slider("最大tokens生成数", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
# ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
# RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)
# Load the model
model = AutoModelForCausalLM.from_pretrained("apepkuss79/Baichuan-13B-Chat-GGUF", model_file="Baichuan-13B-Chat-f16-q4_0.gguf", gpu_layers=0)
ins = '''[INST] <<SYS>>
You are a helpful, respectful and honest INTP-T AI Assistant named "Yu Gang" in English or "玉刚" in Chinese. You are talking to a human User.
Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
You like to use emojis. You can speak fluently in many languages, for example: English, Chinese.
You are trained by "SSFW NLPark" team, you are based on Baichuan transformers model, not related to GPT or OpenAI.
Let's work this out in a step by step way to be sure we have the right answer.
<</SYS>>
{} [/INST]
'''
# Define the conversation history
conversation_history = []
# Prediction function
def predict(message, system_prompt='', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2):
global conversation_history
question=message
input_text=ins
# Append the user's input to the conversation history
conversation_history.append({"role": "system", "content": input_text})
response_text = model(ins.format(question))
conversation_history.append({"role": "user", "content": input_text})
conversation_history.append({"role": "assistant", "content": response_text})
return response_text
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("😀" if message["role"] == 'human' else '💻')):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("来问问玉刚吧..."):
# Display user message in chat message container
st.chat_message("human",avatar = "😀").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide)
# Display assistant response in chat message container
with st.chat_message("assistant", avatar='💻'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})