app.py
Browse files- executequery.py +114 -0
executequery.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.utils.data import Dataset,DataLoader
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import nltk
|
| 5 |
+
from nltk.stem.porter import PorterStemmer
|
| 6 |
+
import json
|
| 7 |
+
import numpy as np
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def ExecuteQuery(query):
|
| 13 |
+
|
| 14 |
+
class NeuralNet(nn.Module):
|
| 15 |
+
|
| 16 |
+
def __init__(self,input_size,hidden_size,num_classes):
|
| 17 |
+
super(NeuralNet,self).__init__()
|
| 18 |
+
self.l1 = nn.Linear(input_size,hidden_size)
|
| 19 |
+
self.l2 = nn.Linear(hidden_size,hidden_size)
|
| 20 |
+
self.l3 = nn.Linear(hidden_size,num_classes)
|
| 21 |
+
self.relu = nn.ReLU()
|
| 22 |
+
|
| 23 |
+
def forward(self,x):
|
| 24 |
+
out = self.l1(x)
|
| 25 |
+
out = self.relu(out)
|
| 26 |
+
out = self.l2(out)
|
| 27 |
+
out = self.relu(out)
|
| 28 |
+
out = self.l3(out)
|
| 29 |
+
return out
|
| 30 |
+
|
| 31 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 32 |
+
|
| 33 |
+
with open('files/intents.json', 'r') as json_data:
|
| 34 |
+
intents = json.load(json_data)
|
| 35 |
+
|
| 36 |
+
FILE = "files/intents.pth"
|
| 37 |
+
data = torch.load(FILE)
|
| 38 |
+
# with open('Data/Tasks.pth') as f:
|
| 39 |
+
# data = torch.load(f)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
input_size = data["input_size"]
|
| 43 |
+
hidden_size = data["hidden_size"]
|
| 44 |
+
output_size = data["output_size"]
|
| 45 |
+
all_words = data["all_words"]
|
| 46 |
+
tags = data["tags"]
|
| 47 |
+
model_state = data["model_state"]
|
| 48 |
+
|
| 49 |
+
model = NeuralNet(input_size,hidden_size,output_size).to(device)
|
| 50 |
+
model.load_state_dict(model_state)
|
| 51 |
+
model.eval()
|
| 52 |
+
|
| 53 |
+
Stemmer = PorterStemmer()
|
| 54 |
+
|
| 55 |
+
def tokenize(sentence):
|
| 56 |
+
return nltk.word_tokenize(sentence)
|
| 57 |
+
|
| 58 |
+
def stem(word):
|
| 59 |
+
return Stemmer.stem(word.lower())
|
| 60 |
+
|
| 61 |
+
def bag_of_words(tokenized_sentence,words):
|
| 62 |
+
sentence_word = [stem(word) for word in tokenized_sentence]
|
| 63 |
+
bag = np.zeros(len(words),dtype=np.float32)
|
| 64 |
+
|
| 65 |
+
for idx , w in enumerate(words):
|
| 66 |
+
if w in sentence_word:
|
| 67 |
+
bag[idx] = 1
|
| 68 |
+
|
| 69 |
+
return bag
|
| 70 |
+
|
| 71 |
+
sentence = str(query)
|
| 72 |
+
|
| 73 |
+
sentence = tokenize(sentence)
|
| 74 |
+
X = bag_of_words(sentence,all_words)
|
| 75 |
+
X = X.reshape(1,X.shape[0])
|
| 76 |
+
X = torch.from_numpy(X).to(device)
|
| 77 |
+
|
| 78 |
+
output = model(X)
|
| 79 |
+
|
| 80 |
+
_ , predicted = torch.max(output,dim=1)
|
| 81 |
+
|
| 82 |
+
tag = tags[predicted.item()]
|
| 83 |
+
|
| 84 |
+
probs = torch.softmax(output,dim=1)
|
| 85 |
+
prob = probs[0][predicted.item()]
|
| 86 |
+
|
| 87 |
+
if prob.item() >= 0.96:
|
| 88 |
+
|
| 89 |
+
for intent in intents['intents']:
|
| 90 |
+
|
| 91 |
+
if tag == intent["tag"]:
|
| 92 |
+
|
| 93 |
+
reply = random.choice(intent["responses"])
|
| 94 |
+
|
| 95 |
+
return reply, tag, prob.item()
|
| 96 |
+
|
| 97 |
+
if prob.item() <= 0.95:
|
| 98 |
+
reply = "opencosmo"
|
| 99 |
+
tag = "opencosmo"
|
| 100 |
+
return reply, tag, prob.item()
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def test():
|
| 105 |
+
query = input("Enter your query: ")
|
| 106 |
+
reply = ExecuteQuery(query)
|
| 107 |
+
print(f"Cosmo: {reply[0]}" )
|
| 108 |
+
print(f"Tag: {reply[1]}")
|
| 109 |
+
print(f"Prob: {reply[2]}")
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
while True:
|
| 114 |
+
test()
|