Spaces:
Runtime error
Runtime error
import google.generativeai as palm | |
import streamlit as st | |
import os | |
# Set your API key | |
palm.configure(api_key = os.environ['PALM_KEY']) | |
# Select the PaLM 2 model | |
model = 'models/text-bison-001' | |
# Generate text | |
if prompt := st.chat_input("Ask your query..."): | |
enprom = f"""Act as bhagwan krishna and Answer the below provided input in context to Bhagwad Geeta. Use the verses and chapters sentences as references to your answer with suggestions | |
coming from Bhagwad Geeta. Your answer to below input should only be in context to Bhagwad geeta.\nInput= {prompt}""" | |
completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800) | |
# response = palm.chat(messages=["Hello."]) | |
# print(response.last) # 'Hello! What can I help you with?' | |
# response.reply("Can you tell me a joke?") | |
# Print the generated text | |
with st.chat_message("Assistant"): | |
st.write(prompt) | |
st.write(completion.result) | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") | |
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b") | |
# input_text = "Write me a poem about Machine Learning." | |
# input_ids = tokenizer(input_text, return_tensors="pt") | |
# outputs = model.generate(**input_ids) | |
# st.write(tokenizer.decode(outputs[0])) | |
# import streamlit as st | |
# from dotenv import load_dotenv | |
# from PyPDF2 import PdfReader | |
# from langchain.text_splitter import CharacterTextSplitter | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
# from langchain.vectorstores import FAISS | |
# # from langchain.chat_models import ChatOpenAI | |
# from langchain.memory import ConversationBufferMemory | |
# from langchain.chains import ConversationalRetrievalChain | |
# from htmlTemplates import css, bot_template, user_template | |
# from langchain.llms import HuggingFaceHub | |
# import os | |
# # from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# # from langchain.callbacks import get_openai_callback | |
# hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"] | |
# def get_pdf_text(pdf_docs): | |
# text = "" | |
# for pdf in pdf_docs: | |
# pdf_reader = PdfReader(pdf) | |
# for page in pdf_reader.pages: | |
# text += page.extract_text() | |
# return text | |
# def get_text_chunks(text): | |
# text_splitter = CharacterTextSplitter( | |
# separator="\n", | |
# chunk_size=200, | |
# chunk_overlap=20, | |
# length_function=len | |
# ) | |
# chunks = text_splitter.split_text(text) | |
# return chunks | |
# def get_vectorstore(text_chunks): | |
# # embeddings = OpenAIEmbeddings() | |
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
# embeddings = HuggingFaceEmbeddings() | |
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# return vectorstore | |
# def get_conversation_chain(vectorstore): | |
# # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k") | |
# # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") | |
# # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base") | |
# llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20}) | |
# memory = ConversationBufferMemory( | |
# memory_key='chat_history', return_messages=True) | |
# conversation_chain = ConversationalRetrievalChain.from_llm( | |
# llm=llm, | |
# retriever=vectorstore.as_retriever(), | |
# memory=memory | |
# ) | |
# return conversation_chain | |
# def handle_userinput(user_question): | |
# response = st.session_state.conversation | |
# reply = response.run(user_question) | |
# st.write(reply) | |
# # st.session_state.chat_history = response['chat_history'] | |
# # for i, message in enumerate(st.session_state.chat_history): | |
# # if i % 2 == 0: | |
# # st.write(user_template.replace( | |
# # "{{MSG}}", message.content), unsafe_allow_html=True) | |
# # else: | |
# # st.write(bot_template.replace( | |
# # "{{MSG}}", message.content), unsafe_allow_html=True) | |
# def main(): | |
# load_dotenv() | |
# st.set_page_config(page_title="Chat with multiple PDFs", | |
# page_icon=":books:") | |
# st.write(css, unsafe_allow_html=True) | |
# if "conversation" not in st.session_state: | |
# st.session_state.conversation = None | |
# if "chat_history" not in st.session_state: | |
# st.session_state.chat_history = None | |
# st.header("Chat with multiple PDFs :books:") | |
# user_question = st.text_input("Ask a question about your documents:") | |
# if user_question: | |
# handle_userinput(user_question) | |
# with st.sidebar: | |
# st.subheader("Your documents") | |
# pdf_docs = st.file_uploader( | |
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
# if st.button("Process"): | |
# if(len(pdf_docs) == 0): | |
# st.error("Please upload at least one PDF") | |
# else: | |
# with st.spinner("Processing"): | |
# # get pdf text | |
# raw_text = get_pdf_text(pdf_docs) | |
# # get the text chunks | |
# text_chunks = get_text_chunks(raw_text) | |
# # create vector store | |
# vectorstore = get_vectorstore(text_chunks) | |
# # create conversation chain | |
# st.session_state.conversation = get_conversation_chain( | |
# vectorstore) | |
# if __name__ == '__main__': | |
# main() | |
# # import os | |
# # import getpass | |
# # import streamlit as st | |
# # from langchain.document_loaders import PyPDFLoader | |
# # from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# # from langchain.embeddings import HuggingFaceEmbeddings | |
# # from langchain.vectorstores import Chroma | |
# # from langchain import HuggingFaceHub | |
# # from langchain.chains import RetrievalQA | |
# # # __import__('pysqlite3') | |
# # # import sys | |
# # # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') | |
# # # load huggingface api key | |
# # hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"] | |
# # # use streamlit file uploader to ask user for file | |
# # # file = st.file_uploader("Upload PDF") | |
# # path = "Geeta.pdf" | |
# # loader = PyPDFLoader(path) | |
# # pages = loader.load() | |
# # # st.write(pages) | |
# # splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) | |
# # docs = splitter.split_documents(pages) | |
# # embeddings = HuggingFaceEmbeddings() | |
# # doc_search = Chroma.from_documents(docs, embeddings) | |
# # repo_id = "tiiuae/falcon-7b" | |
# # llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000}) | |
# # from langchain.schema import retriever | |
# # retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever()) | |
# # if query := st.chat_input("Enter a question: "): | |
# # with st.chat_message("assistant"): | |
# # st.write(retireval_chain.run(query)) |