Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
# from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
import os | |
# from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# from langchain.callbacks import get_openai_callback | |
hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"] | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=200, | |
chunk_overlap=20, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
# embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
embeddings = HuggingFaceEmbeddings() | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
# llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k") | |
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") | |
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base") | |
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20}) | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation | |
reply = response.run(user_question) | |
st.write(reply) | |
# st.session_state.chat_history = response['chat_history'] | |
# for i, message in enumerate(st.session_state.chat_history): | |
# if i % 2 == 0: | |
# st.write(user_template.replace( | |
# "{{MSG}}", message.content), unsafe_allow_html=True) | |
# else: | |
# st.write(bot_template.replace( | |
# "{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple PDFs", | |
page_icon=":books:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
if(len(pdf_docs) == 0): | |
st.error("Please upload at least one PDF") | |
else: | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain( | |
vectorstore) | |
if __name__ == '__main__': | |
main() | |
# import os | |
# import getpass | |
# import streamlit as st | |
# from langchain.document_loaders import PyPDFLoader | |
# from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
# from langchain.vectorstores import Chroma | |
# from langchain import HuggingFaceHub | |
# from langchain.chains import RetrievalQA | |
# # __import__('pysqlite3') | |
# # import sys | |
# # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') | |
# # load huggingface api key | |
# hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"] | |
# # use streamlit file uploader to ask user for file | |
# # file = st.file_uploader("Upload PDF") | |
# path = "Geeta.pdf" | |
# loader = PyPDFLoader(path) | |
# pages = loader.load() | |
# # st.write(pages) | |
# splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) | |
# docs = splitter.split_documents(pages) | |
# embeddings = HuggingFaceEmbeddings() | |
# doc_search = Chroma.from_documents(docs, embeddings) | |
# repo_id = "tiiuae/falcon-7b" | |
# llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000}) | |
# from langchain.schema import retriever | |
# retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever()) | |
# if query := st.chat_input("Enter a question: "): | |
# with st.chat_message("assistant"): | |
# st.write(retireval_chain.run(query)) |