Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,26 +22,30 @@ def cleanup_temp_files():
|
|
| 22 |
# Register cleanup function
|
| 23 |
atexit.register(cleanup_temp_files)
|
| 24 |
|
| 25 |
-
def detect_objects_image(image):
|
| 26 |
"""Process image with YOLO detection."""
|
| 27 |
if image is None:
|
| 28 |
-
return None
|
| 29 |
|
| 30 |
# Convert PIL image to numpy array
|
| 31 |
image_np = np.array(image)
|
| 32 |
|
| 33 |
-
# Perform detection
|
| 34 |
-
results = model(image_np)
|
| 35 |
|
| 36 |
# Get annotated image
|
| 37 |
annotated_image = results[0].plot()
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
def detect_objects_video(video):
|
| 42 |
"""Process video with YOLO detection."""
|
| 43 |
if video is None:
|
| 44 |
-
return None
|
| 45 |
|
| 46 |
# Read input video
|
| 47 |
cap = cv2.VideoCapture(video)
|
|
@@ -50,12 +54,16 @@ def detect_objects_video(video):
|
|
| 50 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 51 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 52 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
| 53 |
|
| 54 |
# Create output video file in our temp directory
|
| 55 |
output_path = os.path.join(TEMP_DIR, f"output_{os.urandom(8).hex()}.mp4")
|
| 56 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 57 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
try:
|
| 60 |
# Process each frame
|
| 61 |
while cap.isOpened():
|
|
@@ -63,20 +71,31 @@ def detect_objects_video(video):
|
|
| 63 |
if not ret:
|
| 64 |
break
|
| 65 |
|
| 66 |
-
# Perform detection
|
| 67 |
-
results = model(frame)
|
| 68 |
annotated_frame = results[0].plot()
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
# Convert RGB to BGR for cv2.VideoWriter
|
| 71 |
annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
|
| 72 |
|
| 73 |
# Write annotated frame
|
| 74 |
out.write(annotated_frame_bgr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
finally:
|
| 76 |
cap.release()
|
| 77 |
out.release()
|
| 78 |
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Periodic cleanup function to remove old processed videos
|
| 82 |
def periodic_cleanup():
|
|
@@ -94,14 +113,23 @@ def periodic_cleanup():
|
|
| 94 |
except Exception:
|
| 95 |
pass
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
# Create Gradio interface
|
| 98 |
-
with gr.Blocks(title="YOLO Object Detection", theme=gr.themes.Soft()) as demo:
|
| 99 |
-
gr.Markdown("#
|
| 100 |
-
gr.Markdown("Upload an image or video to detect objects using YOLOv8
|
| 101 |
|
| 102 |
with gr.Tabs():
|
| 103 |
# Image Detection Tab
|
| 104 |
-
with gr.TabItem("
|
| 105 |
with gr.Row():
|
| 106 |
with gr.Column():
|
| 107 |
image_input = gr.Image(
|
|
@@ -109,59 +137,89 @@ with gr.Blocks(title="YOLO Object Detection", theme=gr.themes.Soft()) as demo:
|
|
| 109 |
label="Upload Image",
|
| 110 |
height=400
|
| 111 |
)
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
with gr.Column():
|
| 115 |
image_output = gr.Image(
|
| 116 |
label="Detection Results",
|
| 117 |
height=400
|
| 118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Video Detection Tab
|
| 121 |
-
with gr.TabItem("
|
| 122 |
with gr.Row():
|
| 123 |
with gr.Column():
|
| 124 |
video_input = gr.Video(
|
| 125 |
label="Upload Video",
|
| 126 |
height=400
|
| 127 |
)
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
with gr.Column():
|
| 131 |
video_output = gr.Video(
|
| 132 |
label="Processed Video",
|
| 133 |
height=400
|
| 134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
gr.Markdown("
|
| 137 |
|
| 138 |
# Info section
|
| 139 |
-
with gr.Accordion("
|
| 140 |
gr.Markdown("""
|
| 141 |
### About This App
|
| 142 |
- **Model:** YOLOv8 nano for efficient object detection
|
| 143 |
- **Supported Images:** JPG, JPEG, PNG
|
| 144 |
- **Supported Videos:** MP4, AVI, MOV, WebM
|
| 145 |
-
- **Features:**
|
| 146 |
|
| 147 |
### How to Use
|
| 148 |
1. Choose the **Image** or **Video** tab
|
| 149 |
2. Upload your file
|
| 150 |
-
3.
|
| 151 |
-
4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
""")
|
| 153 |
|
| 154 |
# Connect functions to buttons
|
| 155 |
image_button.click(
|
| 156 |
fn=detect_objects_image,
|
| 157 |
-
inputs=image_input,
|
| 158 |
-
outputs=image_output
|
| 159 |
)
|
| 160 |
|
| 161 |
video_button.click(
|
| 162 |
fn=detect_objects_video,
|
| 163 |
-
inputs=video_input,
|
| 164 |
-
outputs=video_output
|
| 165 |
)
|
| 166 |
|
| 167 |
# Run periodic cleanup every time the interface loads
|
|
|
|
| 22 |
# Register cleanup function
|
| 23 |
atexit.register(cleanup_temp_files)
|
| 24 |
|
| 25 |
+
def detect_objects_image(image, confidence):
|
| 26 |
"""Process image with YOLO detection."""
|
| 27 |
if image is None:
|
| 28 |
+
return None, "No image provided"
|
| 29 |
|
| 30 |
# Convert PIL image to numpy array
|
| 31 |
image_np = np.array(image)
|
| 32 |
|
| 33 |
+
# Perform detection with confidence threshold
|
| 34 |
+
results = model(image_np, conf=confidence)
|
| 35 |
|
| 36 |
# Get annotated image
|
| 37 |
annotated_image = results[0].plot()
|
| 38 |
|
| 39 |
+
# Count detections
|
| 40 |
+
num_detections = len(results[0].boxes)
|
| 41 |
+
detection_info = f"Detected {num_detections} object(s) with confidence ≥ {confidence:.0%}"
|
| 42 |
+
|
| 43 |
+
return Image.fromarray(annotated_image), detection_info
|
| 44 |
|
| 45 |
+
def detect_objects_video(video, confidence, progress=gr.Progress()):
|
| 46 |
"""Process video with YOLO detection."""
|
| 47 |
if video is None:
|
| 48 |
+
return None, "No video provided"
|
| 49 |
|
| 50 |
# Read input video
|
| 51 |
cap = cv2.VideoCapture(video)
|
|
|
|
| 54 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 55 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 56 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 57 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 58 |
|
| 59 |
# Create output video file in our temp directory
|
| 60 |
output_path = os.path.join(TEMP_DIR, f"output_{os.urandom(8).hex()}.mp4")
|
| 61 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 62 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 63 |
|
| 64 |
+
frame_count = 0
|
| 65 |
+
total_detections = 0
|
| 66 |
+
|
| 67 |
try:
|
| 68 |
# Process each frame
|
| 69 |
while cap.isOpened():
|
|
|
|
| 71 |
if not ret:
|
| 72 |
break
|
| 73 |
|
| 74 |
+
# Perform detection with confidence threshold
|
| 75 |
+
results = model(frame, conf=confidence)
|
| 76 |
annotated_frame = results[0].plot()
|
| 77 |
|
| 78 |
+
# Count detections in this frame
|
| 79 |
+
total_detections += len(results[0].boxes)
|
| 80 |
+
|
| 81 |
# Convert RGB to BGR for cv2.VideoWriter
|
| 82 |
annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
|
| 83 |
|
| 84 |
# Write annotated frame
|
| 85 |
out.write(annotated_frame_bgr)
|
| 86 |
+
|
| 87 |
+
# Update progress
|
| 88 |
+
frame_count += 1
|
| 89 |
+
if total_frames > 0:
|
| 90 |
+
progress((frame_count / total_frames), desc=f"Processing frame {frame_count}/{total_frames}")
|
| 91 |
finally:
|
| 92 |
cap.release()
|
| 93 |
out.release()
|
| 94 |
|
| 95 |
+
avg_detections = total_detections / frame_count if frame_count > 0 else 0
|
| 96 |
+
video_info = f"Processed {frame_count} frames | Total detections: {total_detections} | Average per frame: {avg_detections:.1f}"
|
| 97 |
+
|
| 98 |
+
return output_path, video_info
|
| 99 |
|
| 100 |
# Periodic cleanup function to remove old processed videos
|
| 101 |
def periodic_cleanup():
|
|
|
|
| 113 |
except Exception:
|
| 114 |
pass
|
| 115 |
|
| 116 |
+
# Custom CSS for Inter font
|
| 117 |
+
custom_css = """
|
| 118 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
|
| 119 |
+
|
| 120 |
+
* {
|
| 121 |
+
font-family: 'Inter', sans-serif !important;
|
| 122 |
+
}
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
# Create Gradio interface
|
| 126 |
+
with gr.Blocks(title="YOLO Object Detection", theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 127 |
+
gr.Markdown("# YOLO Object Detection")
|
| 128 |
+
gr.Markdown("Upload an image or video to detect objects using YOLOv8")
|
| 129 |
|
| 130 |
with gr.Tabs():
|
| 131 |
# Image Detection Tab
|
| 132 |
+
with gr.TabItem("Image Detection"):
|
| 133 |
with gr.Row():
|
| 134 |
with gr.Column():
|
| 135 |
image_input = gr.Image(
|
|
|
|
| 137 |
label="Upload Image",
|
| 138 |
height=400
|
| 139 |
)
|
| 140 |
+
image_confidence = gr.Slider(
|
| 141 |
+
minimum=0.1,
|
| 142 |
+
maximum=1.0,
|
| 143 |
+
value=0.25,
|
| 144 |
+
step=0.05,
|
| 145 |
+
label="Confidence Threshold",
|
| 146 |
+
info="Minimum confidence for detection (lower = more detections)"
|
| 147 |
+
)
|
| 148 |
+
image_button = gr.Button("Detect Objects", variant="primary")
|
| 149 |
|
| 150 |
with gr.Column():
|
| 151 |
image_output = gr.Image(
|
| 152 |
label="Detection Results",
|
| 153 |
height=400
|
| 154 |
)
|
| 155 |
+
image_info = gr.Textbox(
|
| 156 |
+
label="Detection Summary",
|
| 157 |
+
interactive=False
|
| 158 |
+
)
|
| 159 |
|
| 160 |
# Video Detection Tab
|
| 161 |
+
with gr.TabItem("Video Detection"):
|
| 162 |
with gr.Row():
|
| 163 |
with gr.Column():
|
| 164 |
video_input = gr.Video(
|
| 165 |
label="Upload Video",
|
| 166 |
height=400
|
| 167 |
)
|
| 168 |
+
video_confidence = gr.Slider(
|
| 169 |
+
minimum=0.1,
|
| 170 |
+
maximum=1.0,
|
| 171 |
+
value=0.25,
|
| 172 |
+
step=0.05,
|
| 173 |
+
label="Confidence Threshold",
|
| 174 |
+
info="Minimum confidence for detection (lower = more detections)"
|
| 175 |
+
)
|
| 176 |
+
video_button = gr.Button("Process Video", variant="primary")
|
| 177 |
|
| 178 |
with gr.Column():
|
| 179 |
video_output = gr.Video(
|
| 180 |
label="Processed Video",
|
| 181 |
height=400
|
| 182 |
)
|
| 183 |
+
video_info = gr.Textbox(
|
| 184 |
+
label="Processing Summary",
|
| 185 |
+
interactive=False
|
| 186 |
+
)
|
| 187 |
|
| 188 |
+
gr.Markdown("Note: Video processing may take some time depending on file size and length.")
|
| 189 |
|
| 190 |
# Info section
|
| 191 |
+
with gr.Accordion("About", open=False):
|
| 192 |
gr.Markdown("""
|
| 193 |
### About This App
|
| 194 |
- **Model:** YOLOv8 nano for efficient object detection
|
| 195 |
- **Supported Images:** JPG, JPEG, PNG
|
| 196 |
- **Supported Videos:** MP4, AVI, MOV, WebM
|
| 197 |
+
- **Features:** Confidence threshold control, detection counting, automatic cleanup
|
| 198 |
|
| 199 |
### How to Use
|
| 200 |
1. Choose the **Image** or **Video** tab
|
| 201 |
2. Upload your file
|
| 202 |
+
3. Adjust the confidence threshold if needed (default: 0.25)
|
| 203 |
+
4. Click the detect/process button
|
| 204 |
+
5. Download your results
|
| 205 |
+
|
| 206 |
+
### Confidence Threshold
|
| 207 |
+
- Higher values (0.5-1.0): Fewer, more certain detections
|
| 208 |
+
- Lower values (0.1-0.4): More detections, may include false positives
|
| 209 |
+
- Default (0.25): Balanced approach
|
| 210 |
""")
|
| 211 |
|
| 212 |
# Connect functions to buttons
|
| 213 |
image_button.click(
|
| 214 |
fn=detect_objects_image,
|
| 215 |
+
inputs=[image_input, image_confidence],
|
| 216 |
+
outputs=[image_output, image_info]
|
| 217 |
)
|
| 218 |
|
| 219 |
video_button.click(
|
| 220 |
fn=detect_objects_video,
|
| 221 |
+
inputs=[video_input, video_confidence],
|
| 222 |
+
outputs=[video_output, video_info]
|
| 223 |
)
|
| 224 |
|
| 225 |
# Run periodic cleanup every time the interface loads
|