CorvaeOboro commited on
Commit
cdac7c5
1 Parent(s): 6ef5d09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -8,7 +8,7 @@ import types
8
  from huggingface_hub import hf_hub_url, cached_download
9
 
10
  #TOKEN = os.environ['TOKEN']
11
- with open(cached_download(hf_hub_url('CorvaeOboro/gen_ability_icon', 'gen_ability_icon_stylegan2ada_20221012.pkl')), 'rb') as f:
12
  G = pickle.load(f)['G_ema']# torch.nn.Module
13
 
14
  device = torch.device("cpu")
@@ -56,11 +56,11 @@ def infer(num_images, interpolate):
56
  with demo:
57
  gr.Markdown(
58
  """
59
- # gen_ability_icon
60
- ![gen_ability_icon_comp](https://raw.githubusercontent.com/CorvaeOboro/gen_ability_icon/master/docs/00_icon_gen4_vqB_comp_0_single.jpg?raw=true "gen_ability_icon_comp")
61
 
62
- creates circular magic ability icons from stylegan2ada model trained on synthetic dataset .
63
- more information here : [https://github.com/CorvaeOboro/gen_ability_icon](https://github.com/CorvaeOboro/gen_ability_icon).
64
  """)
65
  images_num = gr.inputs.Slider(default=6, label="Num Images", minimum=1, maximum=16, step=1)
66
  interpolate = gr.inputs.Checkbox(default=False, label="Interpolate")
 
8
  from huggingface_hub import hf_hub_url, cached_download
9
 
10
  #TOKEN = os.environ['TOKEN']
11
+ with open(cached_download(hf_hub_url('CorvaeOboro/gen_item_ring', 'gen_item_ring_stylegan2ada_20230218.pkl')), 'rb') as f:
12
  G = pickle.load(f)['G_ema']# torch.nn.Module
13
 
14
  device = torch.device("cpu")
 
56
  with demo:
57
  gr.Markdown(
58
  """
59
+ # gen_item_ring
60
+ ![item_ring_process_single](https://raw.githubusercontent.com/CorvaeOboro/gen_item/master/docs/ring/item_ring_process_single.jpg?raw=true "item_ring_process_single")
61
 
62
+ creates ring item images from stylegan2ada model trained on synthetic dataset utilizing procgen and neural networks .
63
+ more information here : [https://github.com/CorvaeOboro/gen_item](https://github.com/CorvaeOboro/gen_item).
64
  """)
65
  images_num = gr.inputs.Slider(default=6, label="Num Images", minimum=1, maximum=16, step=1)
66
  interpolate = gr.inputs.Checkbox(default=False, label="Interpolate")