Spaces:
Sleeping
Sleeping
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Load the text dataset from the specified file | |
dataset = load_dataset("text", data_files="training.txt") | |
# Initialize the GPT-2 tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
# Define a function to tokenize the dataset and prepare labels | |
def tokenize_function(examples): | |
# Tokenize the text to input_ids, attention_mask, with reduced max_length | |
tokenized_inputs = tokenizer( | |
examples["text"], | |
padding="max_length", | |
truncation=True, | |
max_length=256 # Reduced from 512 to 256 | |
) | |
# Prepare labels: labels are the same as input_ids for language modeling | |
tokenized_inputs["labels"] = tokenized_inputs["input_ids"].copy() | |
return tokenized_inputs | |
# Tokenize the entire dataset | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Remove the 'text' column as it's no longer needed after tokenization | |
tokenized_datasets = tokenized_datasets.remove_columns(["text"]) | |
# Set the format of the dataset to PyTorch tensors | |
tokenized_datasets.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"]) | |
# Load the GPT-2 model | |
model = GPT2LMHeadModel.from_pretrained("gpt2") | |
# Define training arguments with adjusted settings | |
training_args = TrainingArguments( | |
output_dir="./output", | |
overwrite_output_dir=True, | |
num_train_epochs=2, # Optionally reduced for quicker iteration | |
per_device_train_batch_size=2, # Reduced from 4 to 2 | |
gradient_accumulation_steps=16, # Added to compensate for smaller batch size | |
save_steps=10_000, | |
save_total_limit=2, | |
) | |
# Initialize the Trainer with the training dataset including labels | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
) | |
# Start the training process | |
trainer.train() | |
model.save_pretrained('C:\\Users\\Mike Corrigan\\Documents\\DMD Year 4 Sem 1\\FYP INFO\\fyp hugging face\\fypmc20277423\\output\\fine_tuned_gpt2_model') | |
tokenizer.save_pretrained('C:\\Users\\Mike Corrigan\\Documents\\DMD Year 4 Sem 1\\FYP INFO\\fyp hugging face\\fypmc20277423\\output\\fine_tuned_gpt2_model') | |